找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypoelliptic Laplacian and Bott–Chern Cohomology; A Theorem of Riemann Jean-Michel Bismut Book 2013 Springer Basel 2013 Riemann-Roch theore

[復(fù)制鏈接]
查看: 27423|回復(fù): 51
樓主
發(fā)表于 2025-3-21 19:03:05 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Hypoelliptic Laplacian and Bott–Chern Cohomology
副標(biāo)題A Theorem of Riemann
編輯Jean-Michel Bismut
視頻videohttp://file.papertrans.cn/431/430772/430772.mp4
概述Gives an important application of the theory of the hypoelliptic Laplacian in complex algebraic geometry.Provides an introduction to applications of Quillen‘s superconnections in complex geometry with
叢書名稱Progress in Mathematics
圖書封面Titlebook: Hypoelliptic Laplacian and Bott–Chern Cohomology; A Theorem of Riemann Jean-Michel Bismut Book 2013 Springer Basel 2013 Riemann-Roch theore
描述The book provides the proof of a complex geometric version of a well-known result in algebraic geometry: the theorem of Riemann–Roch–Grothendieck for proper submersions. It gives an equality of cohomology classes in Bott–Chern cohomology, which is a refinement for complex manifolds of de Rham cohomology. When the manifolds are K?hler, our main result is known. A proof can be given using the elliptic Hodge theory of the fibres, its deformation via Quillen‘s superconnections, and a version in families of the ‘fantastic cancellations‘ of McKean–Singer in local index theory. In the general case, this approach breaks down because the cancellations do not occur any more.?One tool used in the book is a deformation of the Hodge theory of the fibres to a hypoelliptic Hodge theory, in such a way that the relevant cohomological information is preserved, and ‘fantastic cancellations‘ do occur for the deformation. The deformed hypoelliptic Laplacian acts on the total space of the relative ?tangent bundle of the fibres. While the original hypoelliptic Laplacian discovered by the author can be described in terms of the harmonic oscillator along the tangent bundle and of the geodesic flow, here, t
出版日期Book 2013
關(guān)鍵詞Riemann-Roch theorems and Chern characters; analytic torsion; determinants and determinant bundles; hea
版次1
doihttps://doi.org/10.1007/978-3-319-00128-9
isbn_softcover978-3-319-03389-1
isbn_ebook978-3-319-00128-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Basel 2013
The information of publication is updating

書目名稱Hypoelliptic Laplacian and Bott–Chern Cohomology影響因子(影響力)




書目名稱Hypoelliptic Laplacian and Bott–Chern Cohomology影響因子(影響力)學(xué)科排名




書目名稱Hypoelliptic Laplacian and Bott–Chern Cohomology網(wǎng)絡(luò)公開度




書目名稱Hypoelliptic Laplacian and Bott–Chern Cohomology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Hypoelliptic Laplacian and Bott–Chern Cohomology被引頻次




書目名稱Hypoelliptic Laplacian and Bott–Chern Cohomology被引頻次學(xué)科排名




書目名稱Hypoelliptic Laplacian and Bott–Chern Cohomology年度引用




書目名稱Hypoelliptic Laplacian and Bott–Chern Cohomology年度引用學(xué)科排名




書目名稱Hypoelliptic Laplacian and Bott–Chern Cohomology讀者反饋




書目名稱Hypoelliptic Laplacian and Bott–Chern Cohomology讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:42:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:13:02 | 只看該作者
Hypoelliptic Laplacian and Bott–Chern Cohomology978-3-319-00128-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
地板
發(fā)表于 2025-3-22 06:19:13 | 只看該作者
5#
發(fā)表于 2025-3-22 09:50:39 | 只看該作者
6#
發(fā)表于 2025-3-22 16:39:53 | 只看該作者
Schlussbemerkung: kritisches Vor-Denken,05, T06, T10]. He asked me if using analysis, it was possible to prove a Riemann-Roch- Grothendieck theorem in Bott-Chern cohomology for proper holomorphic submersions, if the source manifold is equipped with a K?hler form that is . closed, and if the direct image is locally free. His question was inspired by results of [B89, BGS88b, BK92].
7#
發(fā)表于 2025-3-22 17:32:07 | 只看該作者
https://doi.org/10.1007/978-3-476-05876-8. on .. The purpose of this chapter is to study the adiabatic limit of the holomorphic Hermitian connections on . associated with a family of Hermitian metrics .. The adiabatic limit of two other connections on ... that were defined in [B89] are studied as well.
8#
發(fā)表于 2025-3-22 21:41:55 | 只看該作者
9#
發(fā)表于 2025-3-23 04:04:37 | 只看該作者
10#
發(fā)表于 2025-3-23 07:37:48 | 只看該作者
The holomorphic adiabatic limit,. on .. The purpose of this chapter is to study the adiabatic limit of the holomorphic Hermitian connections on . associated with a family of Hermitian metrics .. The adiabatic limit of two other connections on ... that were defined in [B89] are studied as well.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昭平县| 北流市| 西安市| 吉安市| 乐都县| 桑日县| 龙门县| 紫阳县| 湘乡市| 邯郸县| 广元市| 石景山区| 永修县| 泸溪县| 康定县| 丰台区| 望谟县| 新晃| 徐州市| 蓬莱市| 临安市| 枝江市| 海宁市| 广宗县| 景宁| 从江县| 惠州市| 睢宁县| 尖扎县| 富裕县| 天长市| 南开区| 贞丰县| 新巴尔虎左旗| 湘乡市| 香格里拉县| 阳东县| 湖北省| 大荔县| 马山县| 平罗县|