找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypoelliptic Laplacian and Bott–Chern Cohomology; A Theorem of Riemann Jean-Michel Bismut Book 2013 Springer Basel 2013 Riemann-Roch theore

[復(fù)制鏈接]
樓主: Helmet
31#
發(fā)表于 2025-3-26 21:32:24 | 只看該作者
32#
發(fā)表于 2025-3-27 01:37:48 | 只看該作者
33#
發(fā)表于 2025-3-27 05:45:12 | 只看該作者
34#
發(fā)表于 2025-3-27 10:34:17 | 只看該作者
Introduction,05, T06, T10]. He asked me if using analysis, it was possible to prove a Riemann-Roch- Grothendieck theorem in Bott-Chern cohomology for proper holomorphic submersions, if the source manifold is equipped with a K?hler form that is . closed, and if the direct image is locally free. His question was i
35#
發(fā)表于 2025-3-27 14:35:53 | 只看該作者
The holomorphic adiabatic limit,. on .. The purpose of this chapter is to study the adiabatic limit of the holomorphic Hermitian connections on . associated with a family of Hermitian metrics .. The adiabatic limit of two other connections on ... that were defined in [B89] are studied as well.
36#
發(fā)表于 2025-3-27 21:10:38 | 只看該作者
37#
發(fā)表于 2025-3-28 01:01:02 | 只看該作者
38#
發(fā)表于 2025-3-28 04:17:38 | 只看該作者
Book 2013e deformation. The deformed hypoelliptic Laplacian acts on the total space of the relative ?tangent bundle of the fibres. While the original hypoelliptic Laplacian discovered by the author can be described in terms of the harmonic oscillator along the tangent bundle and of the geodesic flow, here, t
39#
發(fā)表于 2025-3-28 10:01:19 | 只看該作者
40#
發(fā)表于 2025-3-28 10:32:25 | 只看該作者
Delayed Haptic Feedback to Gaze Gesturesback. In practical systems the processing and transmission of signals takes some time, and the feedback may be delayed. We conducted an experiment to determine limits on the feedback delays. The results show that when the delays increase to 200 ms or longer the task completion times are significantl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
景德镇市| 河北区| 和政县| 北碚区| 陵水| 七台河市| 东辽县| 黔东| 湘阴县| 宿松县| 屯门区| 南部县| 慈溪市| 扎囊县| 高密市| 洛浦县| 正阳县| 黔西县| 扎兰屯市| 赤城县| 剑阁县| 军事| 固始县| 扶绥县| 屏东县| 盐城市| 犍为县| 宝兴县| 开阳县| 安泽县| 前郭尔| 乾安县| 文昌市| 巨野县| 翁源县| 柳江县| 衡南县| 唐河县| 广水市| 饶平县| 资源县|