找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypoelliptic Laplacian and Bott–Chern Cohomology; A Theorem of Riemann Jean-Michel Bismut Book 2013 Springer Basel 2013 Riemann-Roch theore

[復(fù)制鏈接]
樓主: Helmet
31#
發(fā)表于 2025-3-26 21:32:24 | 只看該作者
32#
發(fā)表于 2025-3-27 01:37:48 | 只看該作者
33#
發(fā)表于 2025-3-27 05:45:12 | 只看該作者
34#
發(fā)表于 2025-3-27 10:34:17 | 只看該作者
Introduction,05, T06, T10]. He asked me if using analysis, it was possible to prove a Riemann-Roch- Grothendieck theorem in Bott-Chern cohomology for proper holomorphic submersions, if the source manifold is equipped with a K?hler form that is . closed, and if the direct image is locally free. His question was i
35#
發(fā)表于 2025-3-27 14:35:53 | 只看該作者
The holomorphic adiabatic limit,. on .. The purpose of this chapter is to study the adiabatic limit of the holomorphic Hermitian connections on . associated with a family of Hermitian metrics .. The adiabatic limit of two other connections on ... that were defined in [B89] are studied as well.
36#
發(fā)表于 2025-3-27 21:10:38 | 只看該作者
37#
發(fā)表于 2025-3-28 01:01:02 | 只看該作者
38#
發(fā)表于 2025-3-28 04:17:38 | 只看該作者
Book 2013e deformation. The deformed hypoelliptic Laplacian acts on the total space of the relative ?tangent bundle of the fibres. While the original hypoelliptic Laplacian discovered by the author can be described in terms of the harmonic oscillator along the tangent bundle and of the geodesic flow, here, t
39#
發(fā)表于 2025-3-28 10:01:19 | 只看該作者
40#
發(fā)表于 2025-3-28 10:32:25 | 只看該作者
Delayed Haptic Feedback to Gaze Gesturesback. In practical systems the processing and transmission of signals takes some time, and the feedback may be delayed. We conducted an experiment to determine limits on the feedback delays. The results show that when the delays increase to 200 ms or longer the task completion times are significantl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 19:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南乐县| 青岛市| 台南县| 佳木斯市| 米易县| 东方市| 扶风县| 确山县| 乃东县| 沙湾县| 抚松县| 巴东县| 筠连县| 睢宁县| 嘉善县| 永寿县| 连州市| 玛纳斯县| 浮梁县| 城市| 资溪县| 博湖县| 临邑县| 武功县| 博野县| 黄骅市| 泰安市| 正阳县| 衡南县| 贵州省| 丰原市| 万载县| 旺苍县| 两当县| 大埔区| 明星| 伊宁市| 赫章县| 清远市| 农安县| 荃湾区|