找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypoelliptic Laplacian and Bott–Chern Cohomology; A Theorem of Riemann Jean-Michel Bismut Book 2013 Springer Basel 2013 Riemann-Roch theore

[復(fù)制鏈接]
樓主: Helmet
21#
發(fā)表于 2025-3-25 05:20:34 | 只看該作者
Werte schaffen durch M&A-TransaktionenThe purpose of this chapter is to establish the main result of this book, i.e., we give a Riemann-Roch-Grothendieck formula for the class . (.,.). When ., this result was already established in Theorem 5.2.1 using elliptic superconnections. The introduction in . of hypoelliptic superconnections did not allow us to eliminate this assumption.
22#
發(fā)表于 2025-3-25 09:27:31 | 只看該作者
The Riemannian adiabatic limit,The purpose of this chapter is to study the adiabatic limit of the Levi-Civita connection on a fibred manifold. This study was initiated in [B86a], and continued in Bismut-Cheeger [BC89], Berline-Getzler-Vergne [BeGeV92], Berthomieu-Bismut [BerB94] and Bismut [B97].
23#
發(fā)表于 2025-3-25 15:17:51 | 只看該作者
24#
發(fā)表于 2025-3-25 17:11:23 | 只看該作者
25#
發(fā)表于 2025-3-25 20:20:36 | 只看該作者
26#
發(fā)表于 2025-3-26 01:21:44 | 只看該作者
The hypoelliptic superconnections,The purpose of this chapter is to extend the results of [B08, section 3] to the case where .. is not supposed to be closed. More precisely, let . :. be the total space of ., and let . :. be the obvious projection with fibre ..
27#
發(fā)表于 2025-3-26 07:52:05 | 只看該作者
28#
發(fā)表于 2025-3-26 09:42:53 | 只看該作者
29#
發(fā)表于 2025-3-26 14:19:55 | 只看該作者
The hypoelliptic superconnection forms when ,,The purpose of this chapter is to study the hypoelliptic superconnection forms of . in the case where .. In particular, we show that, as in the elliptic case, the form . can be explicitly computed.
30#
發(fā)表于 2025-3-26 19:20:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 19:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资源县| 承德县| 黔江区| 北流市| 新邵县| 房山区| 聂拉木县| 丘北县| 衡山县| 连南| 电白县| 淅川县| 鄂托克旗| 改则县| 钦州市| 河南省| 耿马| 吉水县| 丰都县| 越西县| 怀来县| 龙井市| 通州区| 上栗县| 平顺县| 岳阳市| 五家渠市| 社旗县| 扶绥县| 武乡县| 铁岭县| 建平县| 通江县| 荆州市| 阳西县| 平顶山市| 泰顺县| 荥经县| 通州市| 小金县| 南涧|