找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 貧血
31#
發(fā)表于 2025-3-26 21:04:08 | 只看該作者
32#
發(fā)表于 2025-3-27 03:29:36 | 只看該作者
On the Solvability of Pseudodifferential Equations in Microdistributions,ted by a Fourier Integral Operator with a complex phase-function . of the FBI type, and Condition . is equated to the quasiconvexity of the trace of the imaginary part of . on special curves intersecting the characteristic set of ..
33#
發(fā)表于 2025-3-27 09:21:43 | 只看該作者
Contribution to the Study of Closed 1-Forms and Its Applications,017; Hounie and Zugliani, J Geom Anal 31:2540–2567, 2021), on closed 1-forms defined on manifolds. We also prove here a conjecture of V. I. Arnol’d by leveraging some results obtained during this collaboration, so we believe it is important to gather them, as additional details have been incorporate
34#
發(fā)表于 2025-3-27 11:00:00 | 只看該作者
35#
發(fā)表于 2025-3-27 15:09:28 | 只看該作者
36#
發(fā)表于 2025-3-27 19:51:59 | 只看該作者
https://doi.org/10.1007/978-94-6351-203-9e the chapter with an application to a restriction problem that we call the .. We show that the surface area measure of the sphere satisfies the .-. restriction problem with moments if . and that the Frostman measure constructed by Salem satisfies the .-. restriction problem with moments if . for certain values of . and ..
37#
發(fā)表于 2025-3-28 01:13:12 | 只看該作者
38#
發(fā)表于 2025-3-28 03:21:05 | 只看該作者
,Analyticity in a Dispersive Camassa–Holm Equation with Cubic Nonlinearities,sing this almost conservation law, it is shown that the solution . exists for all time and a lower bound for its radius of spatial analyticity of the form . is established, for some positive constants . and ..
39#
發(fā)表于 2025-3-28 08:27:40 | 只看該作者
40#
發(fā)表于 2025-3-28 11:17:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃园县| 古丈县| 勃利县| 南部县| 韩城市| 眉山市| 蚌埠市| 灌云县| 旬阳县| 武强县| 南雄市| 沙坪坝区| 页游| 克什克腾旗| 太和县| 二连浩特市| 天峨县| 故城县| 句容市| 南川市| 嘉鱼县| 四会市| 清涧县| 宝丰县| 黑水县| 应城市| 徐州市| 和林格尔县| 湘乡市| 建瓯市| 平远县| 靖安县| 重庆市| 丰宁| 吉木萨尔县| 东阿县| 平度市| 隆尧县| 清涧县| 固阳县| 武川县|