找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 貧血
21#
發(fā)表于 2025-3-25 03:31:14 | 只看該作者
https://doi.org/10.1007/978-3-319-31042-8rst, local well-posedness in analytic Gevrey spaces ., ., is established by using trilinear estimates in analytic Bourgain spaces. Then, using the fact that solutions of this equation conserve their .-norm, an almost conservation law in the corresponding analytic Gevrey spaces is derived. Finally, u
22#
發(fā)表于 2025-3-25 07:44:15 | 只看該作者
https://doi.org/10.1007/978-94-6351-203-9 on . as well as global .-Denjoy–Carleman functions. We also introduce the corresponding notion of microglobal regularity. We prove a characterization of distributions (in a given function space) with decay in terms of microglobal regularity in every direction of their Fourier transforms..We conclud
23#
發(fā)表于 2025-3-25 14:52:20 | 只看該作者
European constellation development,he Lie algebra . of real-analytic infinitesimal . automorphisms of a model hypersurface . given by .where . ., and . are homogeneous polynomials. In particular, we classify . with respect to the description of its nilpotent rotations when . ., and . are monomials. We also give an example of a model
24#
發(fā)表于 2025-3-25 17:20:14 | 只看該作者
Star Trek and the Politics of Globalismted by a Fourier Integral Operator with a complex phase-function . of the FBI type, and Condition . is equated to the quasiconvexity of the trace of the imaginary part of . on special curves intersecting the characteristic set of ..
25#
發(fā)表于 2025-3-25 20:46:50 | 只看該作者
https://doi.org/10.1007/978-3-658-27610-2017; Hounie and Zugliani, J Geom Anal 31:2540–2567, 2021), on closed 1-forms defined on manifolds. We also prove here a conjecture of V. I. Arnol’d by leveraging some results obtained during this collaboration, so we believe it is important to gather them, as additional details have been incorporate
26#
發(fā)表于 2025-3-26 02:08:08 | 只看該作者
27#
發(fā)表于 2025-3-26 06:45:09 | 只看該作者
28#
發(fā)表于 2025-3-26 12:20:09 | 只看該作者
29#
發(fā)表于 2025-3-26 13:33:22 | 只看該作者
30#
發(fā)表于 2025-3-26 18:22:49 | 只看該作者
Distributions with Decay and Restriction Problems, on . as well as global .-Denjoy–Carleman functions. We also introduce the corresponding notion of microglobal regularity. We prove a characterization of distributions (in a given function space) with decay in terms of microglobal regularity in every direction of their Fourier transforms..We conclud
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 08:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屏山县| 南安市| 宜阳县| 平罗县| 青川县| 商河县| 辉县市| 略阳县| 巫溪县| 长岭县| 五华县| 宜君县| 蕲春县| 论坛| 灌南县| 宁南县| 武邑县| 宝应县| 老河口市| 建德市| 荆门市| 珠海市| 汉寿县| 醴陵市| 嘉兴市| 太谷县| 长岭县| 安新县| 天峻县| 罗平县| 正阳县| 海林市| 平遥县| 灵台县| 桑植县| 方山县| 马山县| 阜城县| 梁山县| 鸡泽县| 郴州市|