找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 貧血
21#
發(fā)表于 2025-3-25 03:31:14 | 只看該作者
https://doi.org/10.1007/978-3-319-31042-8rst, local well-posedness in analytic Gevrey spaces ., ., is established by using trilinear estimates in analytic Bourgain spaces. Then, using the fact that solutions of this equation conserve their .-norm, an almost conservation law in the corresponding analytic Gevrey spaces is derived. Finally, u
22#
發(fā)表于 2025-3-25 07:44:15 | 只看該作者
https://doi.org/10.1007/978-94-6351-203-9 on . as well as global .-Denjoy–Carleman functions. We also introduce the corresponding notion of microglobal regularity. We prove a characterization of distributions (in a given function space) with decay in terms of microglobal regularity in every direction of their Fourier transforms..We conclud
23#
發(fā)表于 2025-3-25 14:52:20 | 只看該作者
European constellation development,he Lie algebra . of real-analytic infinitesimal . automorphisms of a model hypersurface . given by .where . ., and . are homogeneous polynomials. In particular, we classify . with respect to the description of its nilpotent rotations when . ., and . are monomials. We also give an example of a model
24#
發(fā)表于 2025-3-25 17:20:14 | 只看該作者
Star Trek and the Politics of Globalismted by a Fourier Integral Operator with a complex phase-function . of the FBI type, and Condition . is equated to the quasiconvexity of the trace of the imaginary part of . on special curves intersecting the characteristic set of ..
25#
發(fā)表于 2025-3-25 20:46:50 | 只看該作者
https://doi.org/10.1007/978-3-658-27610-2017; Hounie and Zugliani, J Geom Anal 31:2540–2567, 2021), on closed 1-forms defined on manifolds. We also prove here a conjecture of V. I. Arnol’d by leveraging some results obtained during this collaboration, so we believe it is important to gather them, as additional details have been incorporate
26#
發(fā)表于 2025-3-26 02:08:08 | 只看該作者
27#
發(fā)表于 2025-3-26 06:45:09 | 只看該作者
28#
發(fā)表于 2025-3-26 12:20:09 | 只看該作者
29#
發(fā)表于 2025-3-26 13:33:22 | 只看該作者
30#
發(fā)表于 2025-3-26 18:22:49 | 只看該作者
Distributions with Decay and Restriction Problems, on . as well as global .-Denjoy–Carleman functions. We also introduce the corresponding notion of microglobal regularity. We prove a characterization of distributions (in a given function space) with decay in terms of microglobal regularity in every direction of their Fourier transforms..We conclud
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 08:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰镇市| 大渡口区| 双峰县| 钟祥市| 怀仁县| 邵阳县| 泉州市| 七台河市| 赤峰市| 白山市| 吉隆县| 凉山| 中西区| 潮安县| 赤壁市| 日土县| 屏南县| 靖边县| 尖扎县| 吴旗县| 合作市| 常德市| 英吉沙县| 西和县| 湟中县| 万山特区| 屯昌县| 定结县| 连山| 衢州市| 海淀区| 姚安县| 屏边| 积石山| 大厂| 安福县| 英吉沙县| 吴堡县| 进贤县| 临汾市| 班戈县|