找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 38119|回復(fù): 57
樓主
發(fā)表于 2025-3-21 20:00:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Geometric Analysis of PDEs and Several Complex Variables
編輯Shiferaw Berhanu,Nordine Mir,Gustavo Hoepfner
視頻videohttp://file.papertrans.cn/392/391059/391059.mp4
叢書(shū)名稱Latin American Mathematics Series
圖書(shū)封面Titlebook: ;
出版日期Conference proceedings 2024
版次1
doihttps://doi.org/10.1007/978-3-031-69702-9
isbn_softcover978-3-031-69704-3
isbn_ebook978-3-031-69702-9Series ISSN 2524-6755 Series E-ISSN 2524-6763
issn_series 2524-6755
The information of publication is updating

書(shū)目名稱Geometric Analysis of PDEs and Several Complex Variables影響因子(影響力)




書(shū)目名稱Geometric Analysis of PDEs and Several Complex Variables影響因子(影響力)學(xué)科排名




書(shū)目名稱Geometric Analysis of PDEs and Several Complex Variables網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Geometric Analysis of PDEs and Several Complex Variables網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Geometric Analysis of PDEs and Several Complex Variables被引頻次




書(shū)目名稱Geometric Analysis of PDEs and Several Complex Variables被引頻次學(xué)科排名




書(shū)目名稱Geometric Analysis of PDEs and Several Complex Variables年度引用




書(shū)目名稱Geometric Analysis of PDEs and Several Complex Variables年度引用學(xué)科排名




書(shū)目名稱Geometric Analysis of PDEs and Several Complex Variables讀者反饋




書(shū)目名稱Geometric Analysis of PDEs and Several Complex Variables讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:55:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:53:06 | 只看該作者
,On the Local Regularity of the Gevrey Vectors for H?rmander’s Operators, or of degenerate parabolic type.,.thus improving the result obtained by M. Derridj in 2019 (Tunisian J Math 1(3):321–345, 2019). The optimal result in the degenerate elliptic case was obtained by the second author in 2019 (Pac J Math 302:511–543, 2019), and we obtain in this chapter optimal result in the degenerate parabolic case.
地板
發(fā)表于 2025-3-22 06:42:21 | 只看該作者
On the Solvability of Pseudodifferential Equations in Microdistributions,ted by a Fourier Integral Operator with a complex phase-function . of the FBI type, and Condition . is equated to the quasiconvexity of the trace of the imaginary part of . on special curves intersecting the characteristic set of ..
5#
發(fā)表于 2025-3-22 12:24:17 | 只看該作者
6#
發(fā)表于 2025-3-22 16:08:17 | 只看該作者
Werkstoffverhalten bei Biegeumformungen,We study the real analytic and Gevrey regularity of the solutions to a type of “sum of squares” model operator, see (1), in two variables and obtain a result in agreement with Treves conjecture.
7#
發(fā)表于 2025-3-22 18:09:06 | 只看該作者
https://doi.org/10.1007/978-3-662-53783-1Let . be a smooth real hypersurface in ., and let . be an (.) dimensional subbundle of the CR tangent bundle of .. We prove that the commutator type and the Levi form type associated with . are equal to each other. This answers affirmatively the generalized D’Angelo Conjecture for an (.) dimensional subbundle of the CR tangent bundle.
8#
發(fā)表于 2025-3-23 01:14:40 | 只看該作者
The transition to non-pictorial star maps,We explore the role of some singular integrals in the disproof of some . estimates linked to solvability properties of pseudo-differential equations; it turns out that some of these singular integrals are also related to the construction of a counterexample to Flandrin’s conjecture in signal theory.
9#
發(fā)表于 2025-3-23 03:21:36 | 只看該作者
10#
發(fā)表于 2025-3-23 05:38:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
裕民县| 紫金县| 婺源县| 长顺县| 长垣县| 民县| 扎囊县| 许昌县| 沛县| 惠来县| 湘阴县| 马尔康县| 响水县| 凤庆县| 大化| 通榆县| 会泽县| 斗六市| 墨脱县| 饶平县| 泰州市| 教育| 会泽县| 象山县| 台湾省| 攀枝花市| 和龙市| 屏东县| 乌拉特中旗| 天峻县| 汝阳县| 邢台市| 南昌县| 峨山| 微山县| 瓮安县| 吉林市| 尤溪县| 县级市| 汾阳市| 乐清市|