找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 貧血
11#
發(fā)表于 2025-3-23 11:58:33 | 只看該作者
12#
發(fā)表于 2025-3-23 17:51:52 | 只看該作者
,On a Model “Sum of Squares” Operator,We study the real analytic and Gevrey regularity of the solutions to a type of “sum of squares” model operator, see (1), in two variables and obtain a result in agreement with Treves conjecture.
13#
發(fā)表于 2025-3-23 20:01:43 | 只看該作者
Equality of Commutator Type and Levi Form Type for an ,-Dimensional Bundle,Let . be a smooth real hypersurface in ., and let . be an (.) dimensional subbundle of the CR tangent bundle of .. We prove that the commutator type and the Levi form type associated with . are equal to each other. This answers affirmatively the generalized D’Angelo Conjecture for an (.) dimensional subbundle of the CR tangent bundle.
14#
發(fā)表于 2025-3-24 01:50:05 | 只看該作者
15#
發(fā)表于 2025-3-24 05:57:07 | 只看該作者
16#
發(fā)表于 2025-3-24 09:25:45 | 只看該作者
17#
發(fā)表于 2025-3-24 11:45:43 | 只看該作者
Geometric Analysis of PDEs and Several Complex Variables978-3-031-69702-9Series ISSN 2524-6755 Series E-ISSN 2524-6763
18#
發(fā)表于 2025-3-24 17:35:16 | 只看該作者
https://doi.org/10.1007/978-3-658-30401-0nsion . at 0. The image of the Borel map is a subalgebra of the ring of formal power series .: However, the general structure of the image is not yet well understood. In all examples studied so far, the image is given by the tensor product of a ring of formal series with a ring of convergent series.
19#
發(fā)表于 2025-3-24 22:16:31 | 只看該作者
20#
發(fā)表于 2025-3-25 01:49:25 | 只看該作者
Star Actors in the Hollywood Renaissance hypersurfaces in complex manifolds and provide some new insight into the CR geometry of such hypersurfaces. Then we establish some new results for the two notions of flatness. Among other things, we prove there exists a family ., parameterized by the real numbers (and, hence, is uncountably infinit
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清新县| 寿阳县| 松溪县| 南漳县| 阳新县| 高安市| 颍上县| 子长县| 建德市| 乐业县| 正定县| 胶州市| 南岸区| 凤阳县| 嘉善县| 孟津县| 凤凰县| 独山县| 玉门市| 通化市| 洛宁县| 安吉县| 方正县| 绥德县| 都安| 龙里县| 青阳县| 大城县| 天祝| 贵阳市| 柘城县| 临安市| 桃源县| 习水县| 施秉县| 仁寿县| 灵川县| 华蓥市| 儋州市| 腾冲县| 广元市|