找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: FARCE
41#
發(fā)表于 2025-3-28 15:46:26 | 只看該作者
Julio J. González,Enrique Mandado they share a partial side of positive length. Each triangle in . represents a vertex, while each pair of adjacent triangles represents an edge in the planar graph. We consider the problem of determining when a proper touching triangle representation exists for a ., which is biconnected and after th
42#
發(fā)表于 2025-3-28 20:02:46 | 只看該作者
43#
發(fā)表于 2025-3-29 00:59:17 | 只看該作者
44#
發(fā)表于 2025-3-29 06:34:45 | 只看該作者
45#
發(fā)表于 2025-3-29 08:08:57 | 只看該作者
Microelectronics Packaging Handbook planar graphs. We connect this problem to the theory of permutation patterns, where another open problem concerns the size of ., permutations that contain all patterns of a given size. We generalize superpatterns to classes of permutations determined by forbidden patterns, and we construct superpat
46#
發(fā)表于 2025-3-29 13:57:31 | 只看該作者
https://doi.org/10.1007/978-1-4419-9377-9 them..The drawback of the characterization of SLTRs is that we are not able to effectively check whether a given graph admits a flat angle assignment that fulfills the conditions. Hence it is still open to decide whether the recognition of graphs that admit straight line triangle representation is
47#
發(fā)表于 2025-3-29 15:47:28 | 只看該作者
https://doi.org/10.1007/978-3-319-22545-6es. Firstly, planar .-trees admit 1-bend box-orthogonal drawings with boxes of size ., which generalizes a result of Tayu, Nomura, and Ueno. Secondly, they admit 1-bend polyline drawings with . slopes, which is significantly smaller than the . upper bound established by Keszegh, Pach, and Pálv?lgyi
48#
發(fā)表于 2025-3-29 23:08:13 | 只看該作者
49#
發(fā)表于 2025-3-30 00:03:12 | 只看該作者
50#
發(fā)表于 2025-3-30 04:34:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白水县| 泽普县| 大姚县| 牡丹江市| 黔西县| 西林县| 海伦市| 内黄县| 延长县| 呼伦贝尔市| 沁水县| 仲巴县| 水城县| 双牌县| 泽普县| 申扎县| 中方县| 嘉禾县| 富顺县| 泰和县| 灵寿县| 乐山市| 阿勒泰市| 乃东县| 澳门| 宜阳县| 瑞金市| 通江县| 库车县| 桂林市| 金秀| 高阳县| 云和县| 长葛市| 色达县| 犍为县| 阳信县| 南澳县| 天长市| 抚顺市| 界首市|