找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: FARCE
51#
發(fā)表于 2025-3-30 10:44:13 | 只看該作者
52#
發(fā)表于 2025-3-30 16:12:18 | 只看該作者
53#
發(fā)表于 2025-3-30 18:09:38 | 只看該作者
Microelectronics Packaging Handbookds on a nonuniform density function. We, therefore, have to generalize the theory of area universal floorplans to this situation. The method is then used to prove a result about accommodating points in floorplans that is slightly more general than the conjecture of Ackerman et al.
54#
發(fā)表于 2025-3-30 21:43:50 | 只看該作者
55#
發(fā)表于 2025-3-31 03:28:38 | 只看該作者
Microelectronics Packaging Handbookerns to construct universal point sets of size ../4???Θ(.), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size .(.log..), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.
56#
發(fā)表于 2025-3-31 08:28:18 | 只看該作者
Upward Planarity Testing: A Computational Studyint of view, but have never been implemented. For the first time, we give an extensive experimental comparison between virtually all known approaches to the problem..Furthermore, we present a new SAT formulation based on a recent theoretical result by Fulek et al. [8], which turns out to perform best among all known algorithms.
57#
發(fā)表于 2025-3-31 12:04:56 | 只看該作者
Superpatterns and Universal Point Setserns to construct universal point sets of size ../4???Θ(.), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size .(.log..), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.
58#
發(fā)表于 2025-3-31 14:07:06 | 只看該作者
Strip Planarity Testingas strong relationships with some of the most deeply studied variants of the planarity testing problem, such as ., ., and .. We show that the problem is polynomial-time solvable if . has a fixed planar embedding.
59#
發(fā)表于 2025-3-31 17:48:12 | 只看該作者
60#
發(fā)表于 2025-4-1 01:32:21 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延长县| 涟源市| 宣恩县| 八宿县| 金秀| 康保县| 韶关市| 乐都县| 且末县| 西畴县| 焦作市| 巴林右旗| 平陆县| 二连浩特市| 洪洞县| 呼玛县| 长治市| 工布江达县| 大宁县| 宜丰县| 比如县| 肥东县| 罗平县| 盱眙县| 临澧县| 收藏| 盐城市| 南丰县| 罗江县| 溧阳市| 南江县| 五台县| 咸丰县| 丘北县| 米林县| 正定县| 大姚县| 梁平县| 平塘县| 库尔勒市| 开阳县|