找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: FARCE
11#
發(fā)表于 2025-3-23 13:35:50 | 只看該作者
Upward Planarity Testing: A Computational Studyictly monotonously increasing .-coordinates. Testing whether a graph allows such a drawing is known to be NP-complete, but there is a substantial collection of different algorithmic approaches known in literature..In this paper, we give an overview of the known algorithms, ranging from combinatorial
12#
發(fā)表于 2025-3-23 16:08:33 | 只看該作者
13#
發(fā)表于 2025-3-23 21:02:18 | 只看該作者
14#
發(fā)表于 2025-3-23 23:07:29 | 只看該作者
Morphing Planar Graph Drawings Efficientlyarity is preserved at all times. Each step of the morph moves each vertex at constant speed along a straight line. Although the existence of a morph between any two drawings was established several decades ago, only recently it has been proved that a polynomial number of steps suffices to morph any
15#
發(fā)表于 2025-3-24 02:43:55 | 只看該作者
16#
發(fā)表于 2025-3-24 09:57:39 | 只看該作者
A Linear-Time Algorithm for Testing Outer-1-Planaritye outer face and each edge has at most one crossing. We present a linear time algorithm to test whether a graph is outer-1-planar. The algorithm can be used to produce an outer-1-planar embedding in linear time if it exists.
17#
發(fā)表于 2025-3-24 10:51:45 | 只看該作者
Straight-Line Grid Drawings of 3-Connected 1-Planar Graphse drawings. We show that every 3-connected 1-planar graph has a straight-line drawing on an integer grid of quadratic size, with the exception of a single edge on the outer face that has one bend. The drawing can be computed in linear time from any given 1-planar embedding of the graph.
18#
發(fā)表于 2025-3-24 18:14:54 | 只看該作者
New Bounds on the Maximum Number of Edges in ,-Quasi-Planar Graphss in a .-quasi-planar graph on . vertices is .(.). Fox and Pach showed that every .-quasi-planar graph with . vertices and no pair of edges intersecting in more than .(1) points has at most .(log.). edges. We improve this upper bound to ., where .(.) denotes the inverse Ackermann function, and . dep
19#
發(fā)表于 2025-3-24 22:06:42 | 只看該作者
20#
發(fā)表于 2025-3-25 01:19:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑河市| 明星| 辽源市| 永清县| 延庆县| 岢岚县| 清流县| 永年县| 绥德县| 洞口县| 洛宁县| 水富县| 石楼县| 安徽省| 隆林| 尉氏县| 贵德县| 中牟县| 林芝县| 彰化县| 阳信县| 乐东| 安国市| 乐平市| 贵州省| 澜沧| 蚌埠市| 辽中县| 夏邑县| 清水河县| 无为县| 刚察县| 雷波县| 石嘴山市| 临汾市| 紫阳县| 西安市| 织金县| 红原县| 武宁县| 阿巴嘎旗|