找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: FARCE
51#
發(fā)表于 2025-3-30 10:44:13 | 只看該作者
52#
發(fā)表于 2025-3-30 16:12:18 | 只看該作者
53#
發(fā)表于 2025-3-30 18:09:38 | 只看該作者
Microelectronics Packaging Handbookds on a nonuniform density function. We, therefore, have to generalize the theory of area universal floorplans to this situation. The method is then used to prove a result about accommodating points in floorplans that is slightly more general than the conjecture of Ackerman et al.
54#
發(fā)表于 2025-3-30 21:43:50 | 只看該作者
55#
發(fā)表于 2025-3-31 03:28:38 | 只看該作者
Microelectronics Packaging Handbookerns to construct universal point sets of size ../4???Θ(.), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size .(.log..), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.
56#
發(fā)表于 2025-3-31 08:28:18 | 只看該作者
Upward Planarity Testing: A Computational Studyint of view, but have never been implemented. For the first time, we give an extensive experimental comparison between virtually all known approaches to the problem..Furthermore, we present a new SAT formulation based on a recent theoretical result by Fulek et al. [8], which turns out to perform best among all known algorithms.
57#
發(fā)表于 2025-3-31 12:04:56 | 只看該作者
Superpatterns and Universal Point Setserns to construct universal point sets of size ../4???Θ(.), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size .(.log..), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.
58#
發(fā)表于 2025-3-31 14:07:06 | 只看該作者
Strip Planarity Testingas strong relationships with some of the most deeply studied variants of the planarity testing problem, such as ., ., and .. We show that the problem is polynomial-time solvable if . has a fixed planar embedding.
59#
發(fā)表于 2025-3-31 17:48:12 | 只看該作者
60#
發(fā)表于 2025-4-1 01:32:21 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
鸡泽县| 饶平县| 本溪市| 通河县| 临清市| 汉阴县| 乌恰县| 新化县| 大方县| 贵德县| 平乡县| 香港| 乌拉特中旗| 青铜峡市| 四子王旗| 阿拉善右旗| 乌拉特前旗| 兴城市| 阿拉尔市| 阿鲁科尔沁旗| 双鸭山市| 锡林浩特市| 天峻县| 钦州市| 诸城市| 武安市| 都匀市| 高淳县| 财经| 泗洪县| 黔西县| 沁源县| 自治县| 林州市| 靖边县| 沧州市| 如东县| 治县。| 哈密市| 山阳县| 延边|