找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: FARCE
31#
發(fā)表于 2025-3-27 00:17:36 | 只看該作者
Michael R. Hammock,J. Wilson Mixonanar drawing of . exists such that each edge is monotone in the .-direction and, for any .,.?∈?. with .(.)?
32#
發(fā)表于 2025-3-27 02:20:11 | 只看該作者
Microeconomic Theory for the Social Sciencesarity is preserved at all times. Each step of the morph moves each vertex at constant speed along a straight line. Although the existence of a morph between any two drawings was established several decades ago, only recently it has been proved that a polynomial number of steps suffices to morph any
33#
發(fā)表于 2025-3-27 08:28:48 | 只看該作者
34#
發(fā)表于 2025-3-27 12:50:56 | 只看該作者
35#
發(fā)表于 2025-3-27 16:36:45 | 只看該作者
36#
發(fā)表于 2025-3-27 17:49:12 | 只看該作者
https://doi.org/10.1007/978-3-319-47587-5s in a .-quasi-planar graph on . vertices is .(.). Fox and Pach showed that every .-quasi-planar graph with . vertices and no pair of edges intersecting in more than .(1) points has at most .(log.). edges. We improve this upper bound to ., where .(.) denotes the inverse Ackermann function, and . dep
37#
發(fā)表于 2025-3-28 00:23:57 | 只看該作者
Alexander E. Popugaev,Rainer Wanschaphs generalize outerplanar graphs, which can be recognized in linear time and specialize 1-planar graphs, whose recognition is .-hard..Our main result is a linear-time algorithm that first tests whether a graph?. is ., and then computes an embedding. Moreover, the algorithm can augment . to a maxim
38#
發(fā)表于 2025-3-28 05:11:12 | 只看該作者
39#
發(fā)表于 2025-3-28 10:02:19 | 只看該作者
Timing Methods and Programmable Timers,ntation extension problem for circle graphs, where the input consists of a graph . and a partial representation . giving some pre-drawn chords that represent an induced subgraph of .. The question is whether one can extend . to a representation . of the entire ., i.e., whether one can draw the remai
40#
發(fā)表于 2025-3-28 11:58:50 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
太和县| 常州市| 夹江县| 乐安县| 肇州县| 涿州市| 蚌埠市| 盐边县| 铅山县| 闽清县| 三都| 固原市| 灵璧县| 香格里拉县| 八宿县| 苍南县| 湄潭县| 宜兰县| 崇义县| 叙永县| 望都县| 兴文县| 兴宁市| 丽水市| 杨浦区| 河津市| 临泉县| 顺义区| 疏勒县| 西乡县| 开原市| 吉隆县| 石嘴山市| 巢湖市| 常熟市| 闽清县| 烟台市| 樟树市| 北安市| 涟水县| 内丘县|