找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Cauchy-Riemann Submanifolds; Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing

[復(fù)制鏈接]
查看: 29110|回復(fù): 54
樓主
發(fā)表于 2025-3-21 19:13:25 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry of Cauchy-Riemann Submanifolds
編輯Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al-
視頻videohttp://file.papertrans.cn/384/383799/383799.mp4
概述Presents a collection of reports on the most recent results on CR submanifolds in various ambient spaces.Explores the applications of CR geometry, and in particular the theory of CR submanifolds, to o
圖書封面Titlebook: Geometry of Cauchy-Riemann Submanifolds;  Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing
描述.This book gathers contributions by respected experts on the theory of isometric immersions between Riemannian manifolds, and focuses on the geometry of CR structures on submanifolds in Hermitian manifolds. CR structures are a bundle theoretic recast of the tangential Cauchy–Riemann equations in complex analysis involving several complex variables. The book covers a wide range of topics such as Sasakian geometry, Kaehler and locally conformal Kaehler geometry, the tangential CR equations, Lorentzian geometry, holomorphic statistical?manifolds, and paraquaternionic CR submanifolds..Intended as a tribute to Professor Aurel Bejancu, who discovered the notion of a CR submanifold of a Hermitian manifold in 1978, the book provides an up-to-date overview of several topics in the geometry of CR submanifolds. Presenting detailed information on the most recent advances in the area, it represents a useful resource for mathematicians and physicists alike..
出版日期Book 2016
關(guān)鍵詞CR-submanifolds; Kaehler manifold; Sasakian manifolds; Cauchy–Riemann structure; Semi-Riemannian submers
版次1
doihttps://doi.org/10.1007/978-981-10-0916-7
isbn_softcover978-981-10-9283-1
isbn_ebook978-981-10-0916-7
copyrightSpringer Science+Business Media Singapore 2016
The information of publication is updating

書目名稱Geometry of Cauchy-Riemann Submanifolds影響因子(影響力)




書目名稱Geometry of Cauchy-Riemann Submanifolds影響因子(影響力)學(xué)科排名




書目名稱Geometry of Cauchy-Riemann Submanifolds網(wǎng)絡(luò)公開度




書目名稱Geometry of Cauchy-Riemann Submanifolds網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry of Cauchy-Riemann Submanifolds被引頻次




書目名稱Geometry of Cauchy-Riemann Submanifolds被引頻次學(xué)科排名




書目名稱Geometry of Cauchy-Riemann Submanifolds年度引用




書目名稱Geometry of Cauchy-Riemann Submanifolds年度引用學(xué)科排名




書目名稱Geometry of Cauchy-Riemann Submanifolds讀者反饋




書目名稱Geometry of Cauchy-Riemann Submanifolds讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:37:19 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:44:04 | 只看該作者
Book 2016verview of several topics in the geometry of CR submanifolds. Presenting detailed information on the most recent advances in the area, it represents a useful resource for mathematicians and physicists alike..
地板
發(fā)表于 2025-3-22 06:42:16 | 只看該作者
5#
發(fā)表于 2025-3-22 12:48:50 | 只看該作者
6#
發(fā)表于 2025-3-22 15:34:39 | 只看該作者
7#
發(fā)表于 2025-3-22 19:24:31 | 只看該作者
8#
發(fā)表于 2025-3-22 21:52:44 | 只看該作者
9#
發(fā)表于 2025-3-23 01:23:31 | 只看該作者
Submanifold Theory in Holomorphic Statistical Manifolds,uation. We naturally have various dualistic geometric objects on it. In this article, the basics for statistical submanifolds in holomorphic statistical manifolds are given. We define the sectional curvature for a statistical structure, and study CR-submanifolds in a holomorphic statistical manifold
10#
發(fā)表于 2025-3-23 08:46:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
翁牛特旗| 阿克陶县| 文成县| 林芝县| 南和县| 河东区| 阿瓦提县| 福建省| 博湖县| 清远市| 泰和县| 广平县| 建瓯市| 平凉市| 汨罗市| 大宁县| 德州市| 宜川县| 南投市| 宁化县| 炎陵县| 洱源县| 平顺县| 浦城县| 清流县| 富阳市| 郧西县| 太康县| 北海市| 石狮市| 满洲里市| 东台市| 镇赉县| 新和县| 嘉义县| 宁明县| 乌海市| 雅江县| 奉贤区| 房产| 南召县|