找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Cauchy-Riemann Submanifolds; Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing

[復(fù)制鏈接]
樓主: Flexible
11#
發(fā)表于 2025-3-23 13:32:54 | 只看該作者
Ideal CR Submanifolds,spheres. In addition, the relationship between .-ideal CR submanifolds and critical points of the .-bienergy functional is mentioned. Some topics about variational problem for the .-bienergy functional are also presented.
12#
發(fā)表于 2025-3-23 17:15:43 | 只看該作者
Submersions of CR Submanifolds, . of a Kaehler manifold . onto an almost Hermitian manifold ., Kobayashi (cf. Kobayashi, Tohoku Math. J. 39, 95–100, 1987, [.]) proved that . becomes a Kaehler manifold. In this article, we briefly summarize the contributions on submersions of CR submanifolds of some almost Hermitian manifolds and
13#
發(fā)表于 2025-3-23 21:11:42 | 只看該作者
14#
發(fā)表于 2025-3-24 01:57:26 | 只看該作者
Paraquaternionic CR-Submanifolds,ebra of paraquaternionic numbers. The counterpart in odd dimension of a paraquaternionic structure was introduced in 2006 by S. Ianu?, R. Mazzocco and G.E. V?lcu and is referred to as a mixed 3-structure. It appears in a natural way on lightlike hypersurfaces in paraquaternionic manifolds. In this p
15#
發(fā)表于 2025-3-24 04:59:55 | 只看該作者
https://doi.org/10.1007/978-3-7091-3582-2We exhibit the relationship between the second fundamental form and the Levi form of a CR submanifold . (in the sense of A. Bejancu, [.]) in a Hermitian (e.g., K?hlerian or locally conformal K?hler) manifold . and start a study of the CR extension problem from . to ..
16#
發(fā)表于 2025-3-24 09:37:27 | 只看該作者
17#
發(fā)表于 2025-3-24 11:39:16 | 只看該作者
,Der Gelenk- oder Gerbertr?ger,This essay deals with CR-doubly warped product submanifolds in Sasakian space forms and in Kenmotsu space forms.
18#
發(fā)表于 2025-3-24 18:15:28 | 只看該作者
19#
發(fā)表于 2025-3-24 22:02:35 | 只看該作者
20#
發(fā)表于 2025-3-25 02:56:14 | 只看該作者
CR-Doubly Warped Product Submanifolds,This essay deals with CR-doubly warped product submanifolds in Sasakian space forms and in Kenmotsu space forms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舒兰市| 酒泉市| 衡阳市| 穆棱市| 恩平市| 西安市| 西林县| 炉霍县| 屯门区| 新营市| 平江县| 伊春市| 子长县| 延寿县| 绍兴市| 封丘县| 始兴县| 鄱阳县| 花垣县| 永平县| 隆尧县| 偃师市| 太康县| 农安县| 北宁市| 元朗区| 巫溪县| 南昌县| 保定市| 南开区| 阳高县| 和林格尔县| 堆龙德庆县| 旬阳县| 会宁县| 前郭尔| 湘阴县| 富锦市| 合江县| 武威市| 乐清市|