找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Cauchy-Riemann Submanifolds; Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing

[復(fù)制鏈接]
樓主: Flexible
21#
發(fā)表于 2025-3-25 04:37:22 | 只看該作者
,Die einfachsten statisch bestimmten Tr?ger,spheres. In addition, the relationship between .-ideal CR submanifolds and critical points of the .-bienergy functional is mentioned. Some topics about variational problem for the .-bienergy functional are also presented.
22#
發(fā)表于 2025-3-25 11:20:05 | 只看該作者
Einfache lineare Regression — II . of a Kaehler manifold . onto an almost Hermitian manifold ., Kobayashi (cf. Kobayashi, Tohoku Math. J. 39, 95–100, 1987, [.]) proved that . becomes a Kaehler manifold. In this article, we briefly summarize the contributions on submersions of CR submanifolds of some almost Hermitian manifolds and almost contact metric manifolds.
23#
發(fā)表于 2025-3-25 13:36:49 | 只看該作者
24#
發(fā)表于 2025-3-25 18:31:48 | 只看該作者
Ideal CR Submanifolds,spheres. In addition, the relationship between .-ideal CR submanifolds and critical points of the .-bienergy functional is mentioned. Some topics about variational problem for the .-bienergy functional are also presented.
25#
發(fā)表于 2025-3-25 20:36:09 | 只看該作者
26#
發(fā)表于 2025-3-26 00:39:55 | 只看該作者
CR-Submanifolds of Semi-Riemannian Kaehler Manifolds,s compatible with the Hermitian structure, we recall the results on mixed foliate, normal mixed totally geodesic and totally umbilical CR-submanifolds of a Kaehler manifold. Finally, CR-submanifolds have been studied within the frame-work of space-time (in particular, of general relativity).
27#
發(fā)表于 2025-3-26 04:33:36 | 只看該作者
28#
發(fā)表于 2025-3-26 09:02:32 | 只看該作者
https://doi.org/10.1007/978-981-10-0916-7CR-submanifolds; Kaehler manifold; Sasakian manifolds; Cauchy–Riemann structure; Semi-Riemannian submers
29#
發(fā)表于 2025-3-26 14:33:53 | 只看該作者
30#
發(fā)表于 2025-3-26 19:06:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
许昌市| 泉州市| 天祝| 洪洞县| 彭泽县| 潢川县| 易门县| 北辰区| 韶关市| 来安县| 教育| 施秉县| 南召县| 葫芦岛市| 丰台区| 阳春市| 桃园县| 洪江市| 额敏县| 安岳县| 定襄县| 吴川市| 靖边县| 义乌市| 余干县| 安岳县| 德令哈市| 罗平县| 平谷区| 庆元县| 祁东县| 海晏县| 池州市| 广东省| 象州县| 临湘市| 鞍山市| 板桥市| 福安市| 大安市| 云林县|