找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Cauchy-Riemann Submanifolds; Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing

[復(fù)制鏈接]
樓主: Flexible
11#
發(fā)表于 2025-3-23 13:32:54 | 只看該作者
Ideal CR Submanifolds,spheres. In addition, the relationship between .-ideal CR submanifolds and critical points of the .-bienergy functional is mentioned. Some topics about variational problem for the .-bienergy functional are also presented.
12#
發(fā)表于 2025-3-23 17:15:43 | 只看該作者
Submersions of CR Submanifolds, . of a Kaehler manifold . onto an almost Hermitian manifold ., Kobayashi (cf. Kobayashi, Tohoku Math. J. 39, 95–100, 1987, [.]) proved that . becomes a Kaehler manifold. In this article, we briefly summarize the contributions on submersions of CR submanifolds of some almost Hermitian manifolds and
13#
發(fā)表于 2025-3-23 21:11:42 | 只看該作者
14#
發(fā)表于 2025-3-24 01:57:26 | 只看該作者
Paraquaternionic CR-Submanifolds,ebra of paraquaternionic numbers. The counterpart in odd dimension of a paraquaternionic structure was introduced in 2006 by S. Ianu?, R. Mazzocco and G.E. V?lcu and is referred to as a mixed 3-structure. It appears in a natural way on lightlike hypersurfaces in paraquaternionic manifolds. In this p
15#
發(fā)表于 2025-3-24 04:59:55 | 只看該作者
https://doi.org/10.1007/978-3-7091-3582-2We exhibit the relationship between the second fundamental form and the Levi form of a CR submanifold . (in the sense of A. Bejancu, [.]) in a Hermitian (e.g., K?hlerian or locally conformal K?hler) manifold . and start a study of the CR extension problem from . to ..
16#
發(fā)表于 2025-3-24 09:37:27 | 只看該作者
17#
發(fā)表于 2025-3-24 11:39:16 | 只看該作者
,Der Gelenk- oder Gerbertr?ger,This essay deals with CR-doubly warped product submanifolds in Sasakian space forms and in Kenmotsu space forms.
18#
發(fā)表于 2025-3-24 18:15:28 | 只看該作者
19#
發(fā)表于 2025-3-24 22:02:35 | 只看該作者
20#
發(fā)表于 2025-3-25 02:56:14 | 只看該作者
CR-Doubly Warped Product Submanifolds,This essay deals with CR-doubly warped product submanifolds in Sasakian space forms and in Kenmotsu space forms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
咸丰县| 绥滨县| 靖远县| 泾川县| 建平县| 论坛| 正镶白旗| 西平县| 井陉县| 颍上县| 北安市| 乐都县| 鹤岗市| 钦州市| 上犹县| 泾阳县| 闽清县| 西贡区| 许昌市| 囊谦县| 嘉义市| 临安市| 六枝特区| 岳西县| 安岳县| 赤城县| 井陉县| 闽清县| 茌平县| 修文县| 和林格尔县| 东光县| 盘山县| 泗洪县| 台北县| 汾西县| 常熟市| 桓台县| 宜章县| 开远市| 尖扎县|