找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Cauchy-Riemann Submanifolds; Sorin Dragomir,Mohammad Hasan Shahid,Falleh R. Al- Book 2016 Springer Science+Business Media Sing

[復(fù)制鏈接]
樓主: Flexible
11#
發(fā)表于 2025-3-23 13:32:54 | 只看該作者
Ideal CR Submanifolds,spheres. In addition, the relationship between .-ideal CR submanifolds and critical points of the .-bienergy functional is mentioned. Some topics about variational problem for the .-bienergy functional are also presented.
12#
發(fā)表于 2025-3-23 17:15:43 | 只看該作者
Submersions of CR Submanifolds, . of a Kaehler manifold . onto an almost Hermitian manifold ., Kobayashi (cf. Kobayashi, Tohoku Math. J. 39, 95–100, 1987, [.]) proved that . becomes a Kaehler manifold. In this article, we briefly summarize the contributions on submersions of CR submanifolds of some almost Hermitian manifolds and
13#
發(fā)表于 2025-3-23 21:11:42 | 只看該作者
14#
發(fā)表于 2025-3-24 01:57:26 | 只看該作者
Paraquaternionic CR-Submanifolds,ebra of paraquaternionic numbers. The counterpart in odd dimension of a paraquaternionic structure was introduced in 2006 by S. Ianu?, R. Mazzocco and G.E. V?lcu and is referred to as a mixed 3-structure. It appears in a natural way on lightlike hypersurfaces in paraquaternionic manifolds. In this p
15#
發(fā)表于 2025-3-24 04:59:55 | 只看該作者
https://doi.org/10.1007/978-3-7091-3582-2We exhibit the relationship between the second fundamental form and the Levi form of a CR submanifold . (in the sense of A. Bejancu, [.]) in a Hermitian (e.g., K?hlerian or locally conformal K?hler) manifold . and start a study of the CR extension problem from . to ..
16#
發(fā)表于 2025-3-24 09:37:27 | 只看該作者
17#
發(fā)表于 2025-3-24 11:39:16 | 只看該作者
,Der Gelenk- oder Gerbertr?ger,This essay deals with CR-doubly warped product submanifolds in Sasakian space forms and in Kenmotsu space forms.
18#
發(fā)表于 2025-3-24 18:15:28 | 只看該作者
19#
發(fā)表于 2025-3-24 22:02:35 | 只看該作者
20#
發(fā)表于 2025-3-25 02:56:14 | 只看該作者
CR-Doubly Warped Product Submanifolds,This essay deals with CR-doubly warped product submanifolds in Sasakian space forms and in Kenmotsu space forms.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新余市| 曲水县| 桐柏县| 罗城| 新疆| 乐平市| 会昌县| 成安县| 育儿| 宾川县| 阿鲁科尔沁旗| 五家渠市| 巴彦县| 罗定市| 景泰县| 定南县| 射阳县| 潢川县| 大埔县| 广宁县| 通榆县| 华坪县| 奉新县| 突泉县| 侯马市| 文山县| 娱乐| 沾化县| 克什克腾旗| 娱乐| 永济市| 阿图什市| 夏河县| 滨州市| 革吉县| 南陵县| 前郭尔| 渑池县| 江孜县| 本溪市| 通河县|