找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry; A Metric Approach wi Richard S. Millman,George D. Parker Textbook 19811st edition Springer-Verlag Inc. 1981 Cartesian.Euclid.Geom

[復(fù)制鏈接]
樓主: VERSE
11#
發(fā)表于 2025-3-23 11:44:56 | 只看該作者
12#
發(fā)表于 2025-3-23 15:14:54 | 只看該作者
Area,nd hyperbolic geometries respectively. In the last section we will consider a beautiful theorem due to J. Bolyai which says that if two polygonal regions have the same area then one may be cut into a finite number of pieces and rearranged to form the other.
13#
發(fā)表于 2025-3-23 20:08:52 | 只看該作者
Textbook 19811st edition is to introduce and develop the various axioms slowly, and then, in a departure from other texts, illustrate major definitions and axioms with two or three models. This has the twin advantages of showing the richness of the concept being discussed and of enabling the reader to picture the idea more
14#
發(fā)表于 2025-3-24 01:49:18 | 只看該作者
15#
發(fā)表于 2025-3-24 03:23:19 | 只看該作者
https://doi.org/10.1007/978-3-663-04785-8h other by a collection of ., or first principles. For example, when we discuss incidence geometry below, we shall assume as a first principle that if . and . are distinct points then there is a unique line that contains both . and ..
16#
發(fā)表于 2025-3-24 08:17:22 | 只看該作者
https://doi.org/10.1007/978-3-663-07176-1 satisfied. After the definitions are made, we will give a number of examples which will serve as models for these geometries. Two of these models, the Euclidean Plane and the Hyperbolic Plane, will be used throughout the rest of the book.
17#
發(fā)表于 2025-3-24 13:07:31 | 只看該作者
https://doi.org/10.1007/978-3-663-07177-8 the most intuitive method and led to simple verification of the incidence axioms. However, treating vertical and non-vertical lines separately does have its drawbacks. By making it necessary to break proofs into two cases, it leads to an artificial distinction between lines that really are not diff
18#
發(fā)表于 2025-3-24 15:40:22 | 只看該作者
Herwart Opitz,Wilfried K?nig,Manfred Schütteght expect it to be a consequence of our present axiom system. However, as we shall see in Section 4.3, there are models of a metric geometry that do not satisfy this new axiom. Thus the plane separation axiom does not follow from the axioms of a metric geometry, and it is therefore necessary to add
19#
發(fā)表于 2025-3-24 21:38:02 | 只看該作者
20#
發(fā)表于 2025-3-25 00:18:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邹城市| 沾益县| 嘉兴市| 武清区| 平陆县| 类乌齐县| 定西市| 巴南区| 泗水县| 和林格尔县| 高清| 辽阳市| 南靖县| 乌拉特后旗| 布尔津县| 彰化县| 昌黎县| 灵台县| 南投市| 三明市| 历史| 荥经县| 平江县| 福鼎市| 新营市| 白城市| 六盘水市| 汝州市| 兴仁县| 沈丘县| 荃湾区| 台前县| 吉隆县| 丹东市| 民县| 苍梧县| 琼中| 察哈| 辽源市| 宁武县| 武邑县|