找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry; A Metric Approach wi Richard S. Millman,George D. Parker Textbook 19811st edition Springer-Verlag Inc. 1981 Cartesian.Euclid.Geom

[復制鏈接]
樓主: VERSE
41#
發(fā)表于 2025-3-28 14:40:21 | 只看該作者
Preliminary Notions,h other by a collection of ., or first principles. For example, when we discuss incidence geometry below, we shall assume as a first principle that if . and . are distinct points then there is a unique line that contains both . and ..
42#
發(fā)表于 2025-3-28 21:39:37 | 只看該作者
Incidence and Metric Geometry, satisfied. After the definitions are made, we will give a number of examples which will serve as models for these geometries. Two of these models, the Euclidean Plane and the Hyperbolic Plane, will be used throughout the rest of the book.
43#
發(fā)表于 2025-3-29 02:20:59 | 只看該作者
Betweenness and Elementary Figures, the most intuitive method and led to simple verification of the incidence axioms. However, treating vertical and non-vertical lines separately does have its drawbacks. By making it necessary to break proofs into two cases, it leads to an artificial distinction between lines that really are not diff
44#
發(fā)表于 2025-3-29 05:16:44 | 只看該作者
45#
發(fā)表于 2025-3-29 08:31:16 | 只看該作者
46#
發(fā)表于 2025-3-29 13:10:00 | 只看該作者
Neutral Geometry,try the appropriate notion of equivalence is that of “congruence.” We have already discussed congruence for segments and angles. In this chapter we will define and work with congruence between triangles.
47#
發(fā)表于 2025-3-29 18:29:11 | 只看該作者
48#
發(fā)表于 2025-3-29 23:09:47 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
泾阳县| 霍山县| 衡山县| 鄂温| 宜宾市| 连江县| 惠来县| 隆子县| 桦南县| 鹿泉市| 成都市| 盘山县| 红河县| 仲巴县| 鹰潭市| 庆阳市| 广德县| 澄江县| 周至县| 东山县| 昭苏县| 高淳县| 建德市| 台东市| 杨浦区| 江安县| 襄城县| 贵溪市| 古丈县| 昌黎县| 周宁县| 基隆市| 龙海市| 衡阳市| 蒙自县| 新平| 集贤县| 合肥市| 岳阳市| 景德镇市| 麻栗坡县|