找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry; A Metric Approach wi Richard S. Millman,George D. Parker Textbook 19811st edition Springer-Verlag Inc. 1981 Cartesian.Euclid.Geom

[復(fù)制鏈接]
樓主: VERSE
21#
發(fā)表于 2025-3-25 05:23:16 | 只看該作者
https://doi.org/10.1007/978-3-663-07179-2ned two segments to be parallel if no matter how far they are extended in both directions, they never meet. Note that he was interested in . rather than .. This follows the general preference of the time for finite objects. The idea of . meeting is, however, infinite in nature. How then does one det
22#
發(fā)表于 2025-3-25 07:37:00 | 只看該作者
23#
發(fā)表于 2025-3-25 12:44:43 | 只看該作者
24#
發(fā)表于 2025-3-25 15:57:11 | 只看該作者
,Versuchsprogramm und Versuchsdurchführung, investigation of the properties of a Euclidean area function. In Sections 10.2 and 10.3 we will prove the existence of area functions for Euclidean and hyperbolic geometries respectively. In the last section we will consider a beautiful theorem due to J. Bolyai which says that if two polygonal regi
25#
發(fā)表于 2025-3-25 20:36:22 | 只看該作者
26#
發(fā)表于 2025-3-26 01:55:05 | 只看該作者
27#
發(fā)表于 2025-3-26 06:41:04 | 只看該作者
978-1-4684-0132-5Springer-Verlag Inc. 1981
28#
發(fā)表于 2025-3-26 10:23:57 | 只看該作者
Geometry978-1-4684-0130-1Series ISSN 0172-6056 Series E-ISSN 2197-5604
29#
發(fā)表于 2025-3-26 12:39:23 | 只看該作者
https://doi.org/10.1007/978-3-663-04785-8h other by a collection of ., or first principles. For example, when we discuss incidence geometry below, we shall assume as a first principle that if . and . are distinct points then there is a unique line that contains both . and ..
30#
發(fā)表于 2025-3-26 19:26:27 | 只看該作者
https://doi.org/10.1007/978-3-663-07176-1 satisfied. After the definitions are made, we will give a number of examples which will serve as models for these geometries. Two of these models, the Euclidean Plane and the Hyperbolic Plane, will be used throughout the rest of the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新丰县| 连城县| 陆良县| 九寨沟县| 深泽县| 习水县| 巴中市| 宜川县| 思茅市| 高密市| 棋牌| 马公市| 海林市| 自治县| 墨江| 江北区| 北流市| 洛阳市| 南昌县| 客服| 保亭| 嘉鱼县| 登封市| 军事| 伊金霍洛旗| 介休市| 彰化县| 日土县| 通榆县| 阳城县| 北流市| 达孜县| 龙泉市| 阿勒泰市| 增城市| 丽江市| 尼勒克县| 中宁县| 宜春市| 冀州市| 依安县|