找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry; A Metric Approach wi Richard S. Millman,George D. Parker Textbook 19811st edition Springer-Verlag Inc. 1981 Cartesian.Euclid.Geom

[復(fù)制鏈接]
樓主: VERSE
21#
發(fā)表于 2025-3-25 05:23:16 | 只看該作者
https://doi.org/10.1007/978-3-663-07179-2ned two segments to be parallel if no matter how far they are extended in both directions, they never meet. Note that he was interested in . rather than .. This follows the general preference of the time for finite objects. The idea of . meeting is, however, infinite in nature. How then does one det
22#
發(fā)表于 2025-3-25 07:37:00 | 只看該作者
23#
發(fā)表于 2025-3-25 12:44:43 | 只看該作者
24#
發(fā)表于 2025-3-25 15:57:11 | 只看該作者
,Versuchsprogramm und Versuchsdurchführung, investigation of the properties of a Euclidean area function. In Sections 10.2 and 10.3 we will prove the existence of area functions for Euclidean and hyperbolic geometries respectively. In the last section we will consider a beautiful theorem due to J. Bolyai which says that if two polygonal regi
25#
發(fā)表于 2025-3-25 20:36:22 | 只看該作者
26#
發(fā)表于 2025-3-26 01:55:05 | 只看該作者
27#
發(fā)表于 2025-3-26 06:41:04 | 只看該作者
978-1-4684-0132-5Springer-Verlag Inc. 1981
28#
發(fā)表于 2025-3-26 10:23:57 | 只看該作者
Geometry978-1-4684-0130-1Series ISSN 0172-6056 Series E-ISSN 2197-5604
29#
發(fā)表于 2025-3-26 12:39:23 | 只看該作者
https://doi.org/10.1007/978-3-663-04785-8h other by a collection of ., or first principles. For example, when we discuss incidence geometry below, we shall assume as a first principle that if . and . are distinct points then there is a unique line that contains both . and ..
30#
發(fā)表于 2025-3-26 19:26:27 | 只看該作者
https://doi.org/10.1007/978-3-663-07176-1 satisfied. After the definitions are made, we will give a number of examples which will serve as models for these geometries. Two of these models, the Euclidean Plane and the Hyperbolic Plane, will be used throughout the rest of the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永定县| 靖远县| 五指山市| 依安县| 大理市| 棋牌| 于田县| 城步| 政和县| 天祝| 十堰市| 萍乡市| 永顺县| 湖州市| 宣威市| 滨海县| 广丰县| 中江县| 昌平区| 淮安市| 新田县| 南开区| 梅河口市| 阳新县| 黑水县| 高阳县| 宁化县| 汕尾市| 吉木乃县| 民权县| 凤冈县| 廊坊市| 新民市| 沁水县| 杭州市| 花莲县| 镇巴县| 屯留县| 南投市| 平罗县| 大理市|