找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2017 Springer International Publishing AG

[復制鏈接]
樓主: 延展
31#
發(fā)表于 2025-3-26 21:02:40 | 只看該作者
32#
發(fā)表于 2025-3-27 03:26:02 | 只看該作者
Concentration Properties of Restricted Measures with Applications to Non-Lipschitz Functions,We show that, for any metric probability space (.,?.,?.) with a subgaussian constant ..(.) and any Borel measurable set .???., we have ., where .. is a normalized restriction of . to the set . and . is a universal constant. As a consequence, we deduce concentration inequalities for non-Lipschitz functions.
33#
發(fā)表于 2025-3-27 05:23:33 | 只看該作者
On Random Walks in Large Compact Lie Groups,Let . be the group .(.) or .(.) with . large. How long does it take for a random walk on . to approximate uniform measure? It is shown that in certain natural examples an .-approximation is achieved in time ..
34#
發(fā)表于 2025-3-27 13:13:04 | 只看該作者
35#
發(fā)表于 2025-3-27 14:23:18 | 只看該作者
Valuations on the Space of Quasi-Concave Functions,We characterize the valuations on the space of quasi-concave functions on ., that are rigid motion invariant and continuous with respect to a suitable topology. Among them we also provide a specific description of those which are additionally monotone.
36#
發(fā)表于 2025-3-27 19:57:48 | 只看該作者
37#
發(fā)表于 2025-3-27 22:42:29 | 只看該作者
A Remark on Projections of the Rotated Cube to Complex Lines,Motivated by relations with a symplectic invariant known as the “cylindrical symplectic capacity”, in this note we study the expectation of the area of a minimal projection to a complex line for a randomly rotated cube.
38#
發(fā)表于 2025-3-28 06:10:04 | 只看該作者
On the Expectation of Operator Norms of Random Matrices,We prove estimates for the expected value of operator norms of Gaussian random matrices with independent (but not necessarily identically distributed) and centered entries, acting as operators from . to ..., 1?≤?..?≤?2?≤?.?
39#
發(fā)表于 2025-3-28 08:51:40 | 只看該作者
40#
發(fā)表于 2025-3-28 11:05:39 | 只看該作者
,Royen’s Proof of the Gaussian Correlation Inequality,We present in detail Thomas Royen’s proof of the Gaussian correlation inequality which states that .(. ∩ .)?≥?.(.).(.) for any centered Gaussian measure . on . and symmetric convex sets .,?. in ..
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
霍邱县| 岚皋县| 雅安市| 肇源县| 东乌珠穆沁旗| 乌鲁木齐市| 两当县| 凤山县| 怀仁县| 遂宁市| 塔河县| 淮南市| 盘锦市| 龙川县| 丹巴县| 彩票| 清流县| 宣威市| 射洪县| 嘉鱼县| 滁州市| 湘阴县| 乾安县| 蒙山县| 梧州市| 宁国市| 平遥县| 大石桥市| 肇庆市| 绍兴市| 淮南市| 大兴区| 井陉县| 洱源县| 宜州市| 广丰县| 大厂| 安新县| 临沂市| 彰化市| 南漳县|