找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘az Klartag,Emanuel Milman Book 2017 Springer International Publishing AG

[復制鏈接]
樓主: 延展
41#
發(fā)表于 2025-3-28 16:28:15 | 只看該作者
On Multiplier Processes Under Weak Moment Assumptions,We show that if . satisfies a certain symmetry condition that is closely related to unconditionality, and if . is an isotropic random vector for which . for every .?∈?.. and every ., then the suprema of the corresponding empirical and multiplier processes indexed by . behave as if . were .-subgaussian.
42#
發(fā)表于 2025-3-28 20:09:18 | 只看該作者
43#
發(fā)表于 2025-3-29 02:51:41 | 只看該作者
44#
發(fā)表于 2025-3-29 06:11:10 | 只看該作者
Thomas Richardson,Andy J. Wellingsix . obtained by randomly sampling .?=?.(. ??log.. ??log.) rows from an . × . Fourier matrix satisfies the restricted isometry property of order . with a fixed . with high probability. This improves on Rudelson and Vershynin (Comm Pure Appl Math, 2008), its subsequent improvements, and Bourgain (GAF
45#
發(fā)表于 2025-3-29 08:22:35 | 只看該作者
46#
發(fā)表于 2025-3-29 13:32:22 | 只看該作者
47#
發(fā)表于 2025-3-29 17:30:25 | 只看該作者
Statistical Inventory Managementaussian mean-curvature inequality and a Gaussian iso-second-variation inequality. The new inequality is nothing but an infinitesimal equivalent form of Ehrhard’s inequality for the Gaussian measure. While Ehrhard’s inequality does not extend to general .(1,?.) measures, we formulate a sufficient con
48#
發(fā)表于 2025-3-29 21:47:29 | 只看該作者
Adina Chiril?,Marin Marin,Andreas ?chsnern-degeneracy and a weak continuity assumption on . that . may be chosen to be 0, i.e. that . satisfies the chain rule operator equation, the solutions of which are explicitly known. We also determine the solutions of one-sided chain rule inequalities like . under a further localization assumption. T
49#
發(fā)表于 2025-3-30 01:31:46 | 只看該作者
50#
發(fā)表于 2025-3-30 06:25:50 | 只看該作者
978-3-319-45281-4Springer International Publishing AG 2017
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南靖县| 乐东| 屯留县| 高阳县| 平乡县| 丰顺县| 鹤岗市| 和田县| 县级市| 类乌齐县| 贞丰县| 泰和县| 稷山县| 会理县| 安阳县| 花莲县| 建水县| 东山县| 井研县| 克什克腾旗| 布拖县| 奉贤区| 巍山| 营口市| 贵州省| 武清区| 老河口市| 古田县| 昭觉县| 通渭县| 宁城县| 泰安市| 博湖县| 延吉市| 长汀县| 新兴县| 隆德县| 安泽县| 灌云县| 卫辉市| 夏津县|