找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘az Klartag,Emanuel Milman Book 2017 Springer International Publishing AG

[復制鏈接]
樓主: 延展
51#
發(fā)表于 2025-3-30 10:40:18 | 只看該作者
52#
發(fā)表于 2025-3-30 13:09:08 | 只看該作者
On Repeated Sequential Closures of Constructible Functions in Valuations,that the sequential closure, taken sufficiently many (in fact, infinitely many) times, of the former space is equal to the latter one. This stronger property is necessary for some applications in Alesker (Geom Funct Anal 20(5):1073–1143, 2010).
53#
發(fā)表于 2025-3-30 16:40:20 | 只看該作者
,-Valent Functions,.. These functions, which we call (.,?.)-valent functions, provide a natural generalization of .-valent functions (see?Hayman, Multivalent Functions, 2nd ed, Cambridge Tracts in Mathematics, vol?110, 1994). We provide a rather accurate characterizing of (.,?.)-valent functions in terms of their Tayl
54#
發(fā)表于 2025-3-31 00:07:47 | 只看該作者
55#
發(fā)表于 2025-3-31 04:39:49 | 只看該作者
56#
發(fā)表于 2025-3-31 05:19:31 | 只看該作者
Super-Gaussian Directions of Random Vectors,. We show that there exists a fixed unit vector . such that the random variable . satisfies . where .?>?0 is any median of?|?.?|?, i.e., .. Here, . are universal constants. The dependence on the dimension . is optimal, up to universal constants, improving upon our previous work.
57#
發(fā)表于 2025-3-31 10:28:35 | 只看該作者
58#
發(fā)表于 2025-3-31 14:00:57 | 只看該作者
59#
發(fā)表于 2025-3-31 21:26:21 | 只看該作者
60#
發(fā)表于 2025-3-31 23:16:21 | 只看該作者
Book 2017 also well represented, and related algebraic structures pertaining to valuations and valent functions are discussed. All contributions are original research papers and were subject to the usual refereeing standards.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阿合奇县| 永济市| 同江市| 岳池县| 犍为县| 清新县| 贵德县| 镇平县| 巴中市| 临桂县| 中山市| 三门峡市| 青川县| 汝阳县| 新建县| 平阳县| 柏乡县| 丹棱县| 长垣县| 嘉祥县| 海宁市| 南宁市| 丰台区| 峨眉山市| 寿阳县| 宁津县| 荆州市| 来宾市| 楚雄市| 屯门区| 西贡区| 铅山县| 湄潭县| 阿图什市| 临泽县| 伊金霍洛旗| 宁蒗| 静安区| 上栗县| 乾安县| 深州市|