找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2017 Springer International Publishing AG

[復(fù)制鏈接]
樓主: 延展
41#
發(fā)表于 2025-3-28 16:28:15 | 只看該作者
On Multiplier Processes Under Weak Moment Assumptions,We show that if . satisfies a certain symmetry condition that is closely related to unconditionality, and if . is an isotropic random vector for which . for every .?∈?.. and every ., then the suprema of the corresponding empirical and multiplier processes indexed by . behave as if . were .-subgaussian.
42#
發(fā)表于 2025-3-28 20:09:18 | 只看該作者
43#
發(fā)表于 2025-3-29 02:51:41 | 只看該作者
44#
發(fā)表于 2025-3-29 06:11:10 | 只看該作者
Thomas Richardson,Andy J. Wellingsix . obtained by randomly sampling .?=?.(. ??log.. ??log.) rows from an . × . Fourier matrix satisfies the restricted isometry property of order . with a fixed . with high probability. This improves on Rudelson and Vershynin (Comm Pure Appl Math, 2008), its subsequent improvements, and Bourgain (GAF
45#
發(fā)表于 2025-3-29 08:22:35 | 只看該作者
46#
發(fā)表于 2025-3-29 13:32:22 | 只看該作者
47#
發(fā)表于 2025-3-29 17:30:25 | 只看該作者
Statistical Inventory Managementaussian mean-curvature inequality and a Gaussian iso-second-variation inequality. The new inequality is nothing but an infinitesimal equivalent form of Ehrhard’s inequality for the Gaussian measure. While Ehrhard’s inequality does not extend to general .(1,?.) measures, we formulate a sufficient con
48#
發(fā)表于 2025-3-29 21:47:29 | 只看該作者
Adina Chiril?,Marin Marin,Andreas ?chsnern-degeneracy and a weak continuity assumption on . that . may be chosen to be 0, i.e. that . satisfies the chain rule operator equation, the solutions of which are explicitly known. We also determine the solutions of one-sided chain rule inequalities like . under a further localization assumption. T
49#
發(fā)表于 2025-3-30 01:31:46 | 只看該作者
50#
發(fā)表于 2025-3-30 06:25:50 | 只看該作者
978-3-319-45281-4Springer International Publishing AG 2017
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
竹北市| 台南县| 松滋市| 凯里市| 安康市| 南陵县| 河曲县| 宕昌县| 镇宁| 德惠市| 缙云县| 富蕴县| 昭苏县| 出国| 辽宁省| 南皮县| 黔南| 聊城市| 依兰县| 搜索| 盈江县| 澄迈县| 盱眙县| 辽源市| 合阳县| 冷水江市| 通河县| 夹江县| 崇阳县| 福海县| 光泽县| 苗栗县| 集安市| 广昌县| 凯里市| 玛纳斯县| 肃南| 塘沽区| 海阳市| 郯城县| 翁源县|