找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: Eta Products and Theta Series Identities; Günter K?hler Book 2011 Springer-Verlag Berlin Heidelberg 2011 11-02, 11F20, 11F27, 11R11.Eisens

[復(fù)制鏈接]
樓主: 自治
61#
發(fā)表于 2025-4-1 05:33:28 | 只看該作者
Text in a Wild and Its Challenges, . then we can find complementary components such that a linear combination with ..(.) becomes a Hecke theta series. For .∈{5,7,11,23} the numerator of the eta product is one, .. Then ..(.) itself is a Hecke theta series. These cases are known from (Dummit et al. in Finite Groups—Coming of Age. Cont
62#
發(fā)表于 2025-4-1 09:20:47 | 只看該作者
63#
發(fā)表于 2025-4-1 10:52:07 | 只看該作者
Curvature Measures of Singular Sets∞ is ., there is little chance to find complementary eta products for the construction of eigenforms which might be represented by Hecke theta series,—at least when we stick to level ... The chances are improved when we consider .(.).(...) as an old eta product of level 2.., and indeed the function
64#
發(fā)表于 2025-4-1 17:36:35 | 只看該作者
65#
發(fā)表于 2025-4-1 22:07:00 | 只看該作者
Streakiness (or, The Hot Hand),a product of two simple theta series. All of them have denominator 8 if .≡1?mod?3, while for .≡?1?mod?3 the denominators are 8 for the first and second, and 24 for the remaining two eta products. Some of the identities in this subsection are mentioned in (Kahl and K?hler in J. Math. Anal. Appl. 232:
66#
發(fā)表于 2025-4-2 01:34:27 | 只看該作者
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰城市| 娄烦县| 清河县| 浦江县| 富裕县| 乐业县| 沛县| 甘孜县| 涡阳县| 建宁县| 桐乡市| 瑞安市| 高淳县| 财经| 达日县| 芜湖市| 军事| 乐都县| 桐柏县| 临汾市| 体育| 遂平县| 包头市| 修武县| 高陵县| 仁怀市| 云和县| 绵阳市| 呼伦贝尔市| 陆良县| 从化市| 湟中县| 鄂尔多斯市| 惠东县| 晋宁县| 曲沃县| 永年县| 龙里县| 高邑县| 彩票| 中宁县|