找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eta Products and Theta Series Identities; Günter K?hler Book 2011 Springer-Verlag Berlin Heidelberg 2011 11-02, 11F20, 11F27, 11R11.Eisens

[復(fù)制鏈接]
樓主: 自治
11#
發(fā)表于 2025-3-23 11:54:36 | 只看該作者
12#
發(fā)表于 2025-3-23 16:54:31 | 只看該作者
13#
發(fā)表于 2025-3-23 19:12:22 | 只看該作者
Prime levels ,=,≥5Koninkl. Nederl. Akad. Wetensch. 55:498–503, .) and Schoeneberg (Koninkl. Nederl. Akad. Wetensch. 70:177–182, .). For .=5 and .=7 theta series identities involving real quadratic fields are known from (Kac and Peterson in Adv. Math. 53:125–264, .), (Hiramatsu in Investigations in Number Theory. Advanced Studies in Pure Math.?13:503–584, .).
14#
發(fā)表于 2025-3-24 01:39:56 | 只看該作者
An Algorithm for Listing Lattice Points in a Simplexic eta products of a given level . and weight .. The results in Sect.?3 say that we get this list when we list up all the lattice points in a certain compact simplex. Every single lattice point represents an interesting function, and we really need such a list.
15#
發(fā)表于 2025-3-24 04:28:09 | 只看該作者
16#
發(fā)表于 2025-3-24 07:45:23 | 只看該作者
17#
發(fā)表于 2025-3-24 14:04:09 | 只看該作者
https://doi.org/10.1007/978-3-030-48822-2ince Jacobi’s .(.) is a modular form for .(2). Several of the results in Sects.?10, 11 and 13 are transcriptions of earlier research (K?hler in Abh. Math. Sem. Univ. Hamburg 55, 75–89, .), (K?hler in Math. Z. 197, 69–96, .), (K?hler in Abh. Math. Sem. Univ. Hamburg 58, 15–45, .) on theta series on these three Hecke groups.
18#
發(fā)表于 2025-3-24 18:14:39 | 只看該作者
Spoken Transgression and the Courts,oduct of level . and weight 1 for primes .≥5. The eta product .(.).(3.) is identified with a Hecke theta series for .; the result (11.2) is known from (Dummit et al. in Finite Groups—Coming of Age. Contemp.?Math.?45, 89–98, .), (K?hler in Math.?Z.?197, 69–96, .).
19#
發(fā)表于 2025-3-24 19:31:05 | 只看該作者
Dedekind’s Eta Function and Modular Forms disc or, equivalently, for . in the . ?={.∈?∣Im(.)>0}. This means that the product of the absolute values |1?..| converges uniformly for . in every compact subset of ?. The normal convergence of the product implies that . is a holomorphic function on ? and that .(.)≠0 for all .∈?.
20#
發(fā)表于 2025-3-25 02:45:10 | 只看該作者
Eta Productss from ?, positive or negative or 0. (Of course, an exponent 0 contributes a trivial factor 1 to the product, and therefore we may as well assume that ..≠0 for all ..) Since the product is finite, the lowest common multiple .=lcm?{.} exists, and every . divides ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九龙坡区| 东兰县| 杭州市| 龙口市| 富源县| 平利县| 梓潼县| 佛学| 张家川| 安图县| 巴林左旗| 柳林县| 赫章县| 诏安县| 平乡县| 鲁山县| 玉树县| 新蔡县| 宜兰县| 确山县| 墨竹工卡县| 庄浪县| 阿拉善左旗| 陇南市| 库伦旗| 夏津县| 宾川县| 葫芦岛市| 定南县| 牟定县| 德令哈市| 白沙| 讷河市| 洪湖市| 衡山县| 平武县| 保康县| 高淳县| 抚顺县| 马边| 东兰县|