找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eta Products and Theta Series Identities; Günter K?hler Book 2011 Springer-Verlag Berlin Heidelberg 2011 11-02, 11F20, 11F27, 11R11.Eisens

[復(fù)制鏈接]
樓主: 自治
41#
發(fā)表于 2025-3-28 17:46:16 | 只看該作者
42#
發(fā)表于 2025-3-28 19:10:00 | 只看該作者
43#
發(fā)表于 2025-3-29 02:56:39 | 只看該作者
Curvature Measures of Singular Sets∞ is ., there is little chance to find complementary eta products for the construction of eigenforms which might be represented by Hecke theta series,—at least when we stick to level ... The chances are improved when we consider .(.).(...) as an old eta product of level 2.., and indeed the function .(.).(25.) will play its r?le in Sect.?20.3.
44#
發(fā)表于 2025-3-29 05:08:03 | 只看該作者
45#
發(fā)表于 2025-3-29 08:37:53 | 只看該作者
46#
發(fā)表于 2025-3-29 13:16:50 | 只看該作者
47#
發(fā)表于 2025-3-29 16:59:25 | 只看該作者
Eta Products and Lattice Points in Simplices .(.). is a cuspidal eta product of level . and weight . for every .|. and every (integral or half-integral) .>0, the half lines from the origin through the standard unit vectors belong to the interior of .. Therefore, the first octant {.=(..).∈?.∣.≠0, ..≥0 for all .|.} belongs to the interior of ..
48#
發(fā)表于 2025-3-29 20:16:18 | 只看該作者
Eta Products of Weight , and ,.2 we obtained series expansions for four of these functions. In a closing remark in Sect.?3.6 we explained that these expansions are simple theta series for the rational number field with Dirichlet characters. Now we derive similar expansions for the remaining two eta products
49#
發(fā)表于 2025-3-30 01:22:37 | 只看該作者
50#
發(fā)表于 2025-3-30 06:08:16 | 只看該作者
Levels ,=,, with Primes ,≥3∞ is ., there is little chance to find complementary eta products for the construction of eigenforms which might be represented by Hecke theta series,—at least when we stick to level ... The chances are improved when we consider .(.).(...) as an old eta product of level 2.., and indeed the function .(.).(25.) will play its r?le in Sect.?20.3.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 07:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
托克托县| 忻州市| 麦盖提县| 海淀区| 澎湖县| 朝阳县| 高要市| 千阳县| 乌拉特后旗| 日土县| 南皮县| 秀山| 宜川县| 奎屯市| 咸阳市| 亚东县| 墨脱县| 方城县| 高碑店市| 大方县| 平远县| 灌云县| 太和县| 类乌齐县| 建昌县| 沁阳市| 高雄市| 嘉鱼县| 盐池县| 岱山县| 泸定县| 汾阳市| 砀山县| 厦门市| 开江县| 顺义区| 离岛区| 大厂| 南溪县| 石嘴山市| 茶陵县|