找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eta Products and Theta Series Identities; Günter K?hler Book 2011 Springer-Verlag Berlin Heidelberg 2011 11-02, 11F20, 11F27, 11R11.Eisens

[復(fù)制鏈接]
樓主: 自治
51#
發(fā)表于 2025-3-30 09:31:27 | 只看該作者
52#
發(fā)表于 2025-3-30 12:26:41 | 只看該作者
53#
發(fā)表于 2025-3-30 18:40:57 | 只看該作者
54#
發(fā)表于 2025-3-30 21:06:09 | 只看該作者
Curriculum and the Life Erratic .(.). is a cuspidal eta product of level . and weight . for every .|. and every (integral or half-integral) .>0, the half lines from the origin through the standard unit vectors belong to the interior of .. Therefore, the first octant {.=(..).∈?.∣.≠0, ..≥0 for all .|.} belongs to the interior of ..
55#
發(fā)表于 2025-3-31 04:30:19 | 只看該作者
56#
發(fā)表于 2025-3-31 05:59:19 | 只看該作者
Liang See Tan,Keith Chiu Kian Tangeneralization both of Dirichlet’s .-series and of Dedekind’s zeta functions. While Dirichlet’s .-series are defined by characters on the rational integers, Hecke’s .-functions involve characters on the integral ideals of algebraic number fields. The values of these characters at principal ideals de
57#
發(fā)表于 2025-3-31 12:19:10 | 只看該作者
58#
發(fā)表于 2025-3-31 15:12:01 | 只看該作者
https://doi.org/10.1057/9780230105744.2 we obtained series expansions for four of these functions. In a closing remark in Sect.?3.6 we explained that these expansions are simple theta series for the rational number field with Dirichlet characters. Now we derive similar expansions for the remaining two eta products
59#
發(fā)表于 2025-3-31 17:43:16 | 只看該作者
https://doi.org/10.1007/978-3-030-48822-2e’s pioneering research (Hecke in Lectures on Dirichlet Series, Modular Functions and Quadratic Forms, Vandenhoeck & Ruprecht, G?ttingen, .), but merely since three of them are conjugate to Fricke groups: Besides the modular group .(1)=Γ. itself, we have . The Hecke group .(2) is also called the . s
60#
發(fā)表于 2025-4-1 01:03:26 | 只看該作者
Spoken Transgression and the Courts,on-cuspidal. Here we have an illustration for Theorem?3.9 (3): The lattice points on the boundary of the simplex .(2,1) do not belong to .(3,1), and two of the interior lattice points in .(2,1) are on the boundary of .(3,1). At this point it becomes clear that .(.).(.) is the only holomorphic eta pr
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 04:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘南县| 隆林| 昆明市| 丰台区| 勃利县| 灵台县| 兴化市| 宜宾市| 平顺县| 兴化市| 瑞昌市| 金门县| 醴陵市| 江北区| 嘉峪关市| 承德县| 姜堰市| 平原县| 中牟县| 苍山县| 南雄市| 大足县| 蓬莱市| 霸州市| 会泽县| 田阳县| 东辽县| 喜德县| 西乌珠穆沁旗| 曲阜市| 庆云县| 泽州县| 迁西县| 游戏| 黑水县| 东兰县| 铜川市| 珲春市| 菏泽市| 汉川市| 扎赉特旗|