找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eta Products and Theta Series Identities; Günter K?hler Book 2011 Springer-Verlag Berlin Heidelberg 2011 11-02, 11F20, 11F27, 11R11.Eisens

[復制鏈接]
樓主: 自治
51#
發(fā)表于 2025-3-30 09:31:27 | 只看該作者
52#
發(fā)表于 2025-3-30 12:26:41 | 只看該作者
53#
發(fā)表于 2025-3-30 18:40:57 | 只看該作者
54#
發(fā)表于 2025-3-30 21:06:09 | 只看該作者
Curriculum and the Life Erratic .(.). is a cuspidal eta product of level . and weight . for every .|. and every (integral or half-integral) .>0, the half lines from the origin through the standard unit vectors belong to the interior of .. Therefore, the first octant {.=(..).∈?.∣.≠0, ..≥0 for all .|.} belongs to the interior of ..
55#
發(fā)表于 2025-3-31 04:30:19 | 只看該作者
56#
發(fā)表于 2025-3-31 05:59:19 | 只看該作者
Liang See Tan,Keith Chiu Kian Tangeneralization both of Dirichlet’s .-series and of Dedekind’s zeta functions. While Dirichlet’s .-series are defined by characters on the rational integers, Hecke’s .-functions involve characters on the integral ideals of algebraic number fields. The values of these characters at principal ideals de
57#
發(fā)表于 2025-3-31 12:19:10 | 只看該作者
58#
發(fā)表于 2025-3-31 15:12:01 | 只看該作者
https://doi.org/10.1057/9780230105744.2 we obtained series expansions for four of these functions. In a closing remark in Sect.?3.6 we explained that these expansions are simple theta series for the rational number field with Dirichlet characters. Now we derive similar expansions for the remaining two eta products
59#
發(fā)表于 2025-3-31 17:43:16 | 只看該作者
https://doi.org/10.1007/978-3-030-48822-2e’s pioneering research (Hecke in Lectures on Dirichlet Series, Modular Functions and Quadratic Forms, Vandenhoeck & Ruprecht, G?ttingen, .), but merely since three of them are conjugate to Fricke groups: Besides the modular group .(1)=Γ. itself, we have . The Hecke group .(2) is also called the . s
60#
發(fā)表于 2025-4-1 01:03:26 | 只看該作者
Spoken Transgression and the Courts,on-cuspidal. Here we have an illustration for Theorem?3.9 (3): The lattice points on the boundary of the simplex .(2,1) do not belong to .(3,1), and two of the interior lattice points in .(2,1) are on the boundary of .(3,1). At this point it becomes clear that .(.).(.) is the only holomorphic eta pr
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 02:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
上栗县| 敖汉旗| 噶尔县| 桦甸市| 郑州市| 宜兴市| 克山县| 修水县| 娄底市| 澄迈县| 海盐县| 保靖县| 南召县| 洪泽县| 错那县| 商都县| 中卫市| 瑞丽市| 雅江县| 潮州市| 新竹市| 志丹县| 鸡泽县| 海盐县| 巴楚县| 韶山市| 富裕县| 比如县| 宝鸡市| 金川县| 和平区| 略阳县| 方正县| 台南县| 科技| 山西省| 方正县| 潜山县| 长兴县| 西盟| 三原县|