找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eta Products and Theta Series Identities; Günter K?hler Book 2011 Springer-Verlag Berlin Heidelberg 2011 11-02, 11F20, 11F27, 11R11.Eisens

[復(fù)制鏈接]
樓主: 自治
41#
發(fā)表于 2025-3-28 17:46:16 | 只看該作者
42#
發(fā)表于 2025-3-28 19:10:00 | 只看該作者
43#
發(fā)表于 2025-3-29 02:56:39 | 只看該作者
Curvature Measures of Singular Sets∞ is ., there is little chance to find complementary eta products for the construction of eigenforms which might be represented by Hecke theta series,—at least when we stick to level ... The chances are improved when we consider .(.).(...) as an old eta product of level 2.., and indeed the function .(.).(25.) will play its r?le in Sect.?20.3.
44#
發(fā)表于 2025-3-29 05:08:03 | 只看該作者
45#
發(fā)表于 2025-3-29 08:37:53 | 只看該作者
46#
發(fā)表于 2025-3-29 13:16:50 | 只看該作者
47#
發(fā)表于 2025-3-29 16:59:25 | 只看該作者
Eta Products and Lattice Points in Simplices .(.). is a cuspidal eta product of level . and weight . for every .|. and every (integral or half-integral) .>0, the half lines from the origin through the standard unit vectors belong to the interior of .. Therefore, the first octant {.=(..).∈?.∣.≠0, ..≥0 for all .|.} belongs to the interior of ..
48#
發(fā)表于 2025-3-29 20:16:18 | 只看該作者
Eta Products of Weight , and ,.2 we obtained series expansions for four of these functions. In a closing remark in Sect.?3.6 we explained that these expansions are simple theta series for the rational number field with Dirichlet characters. Now we derive similar expansions for the remaining two eta products
49#
發(fā)表于 2025-3-30 01:22:37 | 只看該作者
50#
發(fā)表于 2025-3-30 06:08:16 | 只看該作者
Levels ,=,, with Primes ,≥3∞ is ., there is little chance to find complementary eta products for the construction of eigenforms which might be represented by Hecke theta series,—at least when we stick to level ... The chances are improved when we consider .(.).(...) as an old eta product of level 2.., and indeed the function .(.).(25.) will play its r?le in Sect.?20.3.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 02:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉田县| 阳东县| 浙江省| 洛南县| 葵青区| 大足县| 宁安市| 湄潭县| 长治市| 绥滨县| 东台市| 绥宁县| 贡觉县| 安新县| 革吉县| 尼玛县| 南靖县| 灵寿县| 泸水县| 陆丰市| 朝阳区| 灵台县| 枝江市| 扎兰屯市| 墨玉县| 嘉祥县| 乡宁县| 云阳县| 平谷区| 海安县| 中牟县| 新宾| 张家港市| 镶黄旗| 大冶市| 罗城| 马公市| 安西县| 天祝| 吉木萨尔县| 北安市|