找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eta Products and Theta Series Identities; Günter K?hler Book 2011 Springer-Verlag Berlin Heidelberg 2011 11-02, 11F20, 11F27, 11R11.Eisens

[復(fù)制鏈接]
樓主: 自治
41#
發(fā)表于 2025-3-28 17:46:16 | 只看該作者
42#
發(fā)表于 2025-3-28 19:10:00 | 只看該作者
43#
發(fā)表于 2025-3-29 02:56:39 | 只看該作者
Curvature Measures of Singular Sets∞ is ., there is little chance to find complementary eta products for the construction of eigenforms which might be represented by Hecke theta series,—at least when we stick to level ... The chances are improved when we consider .(.).(...) as an old eta product of level 2.., and indeed the function .(.).(25.) will play its r?le in Sect.?20.3.
44#
發(fā)表于 2025-3-29 05:08:03 | 只看該作者
45#
發(fā)表于 2025-3-29 08:37:53 | 只看該作者
46#
發(fā)表于 2025-3-29 13:16:50 | 只看該作者
47#
發(fā)表于 2025-3-29 16:59:25 | 只看該作者
Eta Products and Lattice Points in Simplices .(.). is a cuspidal eta product of level . and weight . for every .|. and every (integral or half-integral) .>0, the half lines from the origin through the standard unit vectors belong to the interior of .. Therefore, the first octant {.=(..).∈?.∣.≠0, ..≥0 for all .|.} belongs to the interior of ..
48#
發(fā)表于 2025-3-29 20:16:18 | 只看該作者
Eta Products of Weight , and ,.2 we obtained series expansions for four of these functions. In a closing remark in Sect.?3.6 we explained that these expansions are simple theta series for the rational number field with Dirichlet characters. Now we derive similar expansions for the remaining two eta products
49#
發(fā)表于 2025-3-30 01:22:37 | 只看該作者
50#
發(fā)表于 2025-3-30 06:08:16 | 只看該作者
Levels ,=,, with Primes ,≥3∞ is ., there is little chance to find complementary eta products for the construction of eigenforms which might be represented by Hecke theta series,—at least when we stick to level ... The chances are improved when we consider .(.).(...) as an old eta product of level 2.., and indeed the function .(.).(25.) will play its r?le in Sect.?20.3.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 02:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霞浦县| 抚宁县| 河津市| 准格尔旗| 福州市| 宝清县| 仁化县| 南郑县| 仁寿县| 唐山市| 永平县| 门源| 安陆市| 城步| 太仆寺旗| 芒康县| 朝阳市| 伊宁县| 盐城市| 德兴市| 德昌县| 石景山区| 咸宁市| 南溪县| 曲靖市| 乌什县| 迁西县| 平陆县| 迁西县| 屯门区| 棋牌| 格尔木市| 闽侯县| 靖江市| 伊春市| 元江| 太白县| 武冈市| 泰兴市| 临夏市| 新巴尔虎左旗|