找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eta Products and Theta Series Identities; Günter K?hler Book 2011 Springer-Verlag Berlin Heidelberg 2011 11-02, 11F20, 11F27, 11R11.Eisens

[復(fù)制鏈接]
樓主: 自治
21#
發(fā)表于 2025-3-25 05:48:28 | 只看該作者
22#
發(fā)表于 2025-3-25 08:05:42 | 只看該作者
23#
發(fā)表于 2025-3-25 11:49:13 | 只看該作者
24#
發(fā)表于 2025-3-25 17:16:59 | 只看該作者
25#
發(fā)表于 2025-3-25 21:56:58 | 只看該作者
26#
發(fā)表于 2025-3-26 03:13:29 | 只看該作者
27#
發(fā)表于 2025-3-26 07:33:51 | 只看該作者
28#
發(fā)表于 2025-3-26 11:44:04 | 只看該作者
Prime levels ,=,≥5 . then we can find complementary components such that a linear combination with ..(.) becomes a Hecke theta series. For .∈{5,7,11,23} the numerator of the eta product is one, .. Then ..(.) itself is a Hecke theta series. These cases are known from (Dummit et al. in Finite Groups—Coming of Age. Cont
29#
發(fā)表于 2025-3-26 14:13:55 | 只看該作者
Level ,=4for Γ.(2) listed at the beginning of Sect.?10.1. Therefore the representations by theta series are quite similar to those in Sect.?10.1. A?minor difference is that we need larger periods for the characters. It is easy to verify the following result, which allows a comfortable construction of modular
30#
發(fā)表于 2025-3-26 19:12:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 02:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岐山县| 东港市| 万载县| 抚松县| 乐至县| 涿鹿县| 雷波县| 加查县| 临桂县| 额敏县| 兰州市| 庐江县| 滨州市| 茌平县| 伊川县| 兖州市| 十堰市| 南部县| 双鸭山市| 密山市| 久治县| 宾川县| 上思县| 淮阳县| 新巴尔虎左旗| 沁水县| 青河县| 城市| 左贡县| 福清市| 波密县| 寻乌县| 榕江县| 乐亭县| 安阳市| 沂源县| 宁远县| 象山县| 安福县| 太康县| 太和县|