找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Polynomial Computation; Richard Zippel Book 1993 Springer Science+Business Media New York 1993 Approximation.Diophantine approxi

[復(fù)制鏈接]
樓主: Polk
31#
發(fā)表于 2025-3-26 21:00:26 | 只看該作者
Zusammenfassende Darstellung der Arbeit,n be expressed as determining integers . and . that minimize .. Continued fraction techniques can be used to efficiently determine integers p and . satisfying . This is a rewritten form of Proposition 5.
32#
發(fā)表于 2025-3-27 02:18:13 | 只看該作者
https://doi.org/10.1007/978-3-322-84101-8ons with rational functions (quotients of polynomials) require a GCD to reduce the fraction to lowest terms. However, computing polynomial GCD’s is significantly more difficult than the arithmetic calculations discussed in Chapter 7.
33#
發(fā)表于 2025-3-27 07:07:11 | 只看該作者
34#
發(fā)表于 2025-3-27 11:19:17 | 只看該作者
TVP S.A. Governance (1989–2015)f possible terms in a multivariate polynomial can be exponential in the number of variables, techniques similar to those of Chapter 12 must be used to avoid spending inordinate time computing coefficients that are equal to zero.
35#
發(fā)表于 2025-3-27 16:36:44 | 只看該作者
https://doi.org/10.1007/978-3-642-92194-0es were then used to compute the multivariate coefficients of the Gen of two polynomials. The modular interpolation approach requires no additional information about the coefficients other than degree or term bounds and thus can be used for a wide variety of other problems.
36#
發(fā)表于 2025-3-27 19:25:17 | 只看該作者
37#
發(fā)表于 2025-3-28 01:27:09 | 只看該作者
38#
發(fā)表于 2025-3-28 05:03:35 | 只看該作者
https://doi.org/10.1007/978-3-322-92936-5This chapter discusses a variety of algorithms for manipulating . Formal power series are infinite power series where we are not concerned with issues of convergence. Thus, both . and . . are formal power series, even though . does not converge for any non-zero value of ..
39#
發(fā)表于 2025-3-28 06:50:10 | 只看該作者
40#
發(fā)表于 2025-3-28 13:12:38 | 只看該作者
Das Parteiensystem Sachsen-AnhaltsLet . be a polynomial over an integral domain., .. As with rational integers, we say that . is . if there exist polynomials.,.,neither of which is in., such that ..Otherwise,. is said to be . or ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
唐山市| 玉田县| 夏邑县| 宝清县| 宁蒗| 铜梁县| 永安市| 仙桃市| 河西区| 铜鼓县| 武山县| 瑞安市| 灯塔市| 嘉鱼县| 扎兰屯市| 铁力市| 论坛| 隆德县| 息烽县| 鹤壁市| 通河县| 吉木乃县| 增城市| 靖江市| 昂仁县| 厦门市| 南皮县| 兴山县| 交城县| 河池市| 汉阴县| 伊春市| 庄河市| 化州市| 蒙山县| 措美县| 霍城县| 宁强县| 新竹县| 独山县| 裕民县|