找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Polynomial Computation; Richard Zippel Book 1993 Springer Science+Business Media New York 1993 Approximation.Diophantine approxi

[復(fù)制鏈接]
樓主: Polk
11#
發(fā)表于 2025-3-23 10:06:23 | 只看該作者
12#
發(fā)表于 2025-3-23 16:08:36 | 只看該作者
0893-3405 g polynomials including factoring polynomials. Thesealgorithms are discussed from both a theoretical and practicalperspective. Those cases where theoretically optimal algorithms areinappropriate are discussed and the practical alternatives areexplained...Effective Polynomial Computation. provides mu
13#
發(fā)表于 2025-3-23 21:29:06 | 只看該作者
14#
發(fā)表于 2025-3-24 01:56:53 | 只看該作者
https://doi.org/10.1007/978-3-663-13642-2on on which to build more complex structures like rational functions, algebraic functions, power series and rings of transcendental functions. And third, the algorithms for polynomial arithmetic are well understood, efficient and relatively easy to implement.
15#
發(fā)表于 2025-3-24 02:49:33 | 只看該作者
16#
發(fā)表于 2025-3-24 09:57:26 | 只看該作者
17#
發(fā)表于 2025-3-24 10:46:21 | 只看該作者
Diophantine Equations,arithmetic, quantum mechanics and the discretization introduced by synchronous computers, they arise in a number of practical situations. This chapter discusses several different classes of diophantine equations that frequently arise and techniques for their solution.
18#
發(fā)表于 2025-3-24 17:37:12 | 只看該作者
Zero Equivalence Testing,when done properly, only requires time polynomial in the size of the answer. This is often called . model of computation since the polynomials are treated as opaque boxes—how the values of the polynomial are computed is available to us.
19#
發(fā)表于 2025-3-24 23:00:44 | 只看該作者
20#
發(fā)表于 2025-3-24 23:23:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐县| 榆树市| 宾川县| 宁陕县| 怀化市| 丰镇市| 道真| 华安县| 敖汉旗| 务川| 望奎县| 林周县| 丰镇市| 嵊泗县| 怀安县| 郑州市| 西和县| 葫芦岛市| 隆昌县| 翼城县| 鹰潭市| 深圳市| 新源县| 淮北市| 石门县| 永宁县| 夏邑县| 开平市| 九龙县| 姚安县| 扬中市| 东海县| 瑞金市| 绥中县| 旌德县| 乾安县| 肥城市| 五台县| 阳曲县| 康平县| 克拉玛依市|