找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Polynomial Computation; Richard Zippel Book 1993 Springer Science+Business Media New York 1993 Approximation.Diophantine approxi

[復(fù)制鏈接]
樓主: Polk
11#
發(fā)表于 2025-3-23 10:06:23 | 只看該作者
12#
發(fā)表于 2025-3-23 16:08:36 | 只看該作者
0893-3405 g polynomials including factoring polynomials. Thesealgorithms are discussed from both a theoretical and practicalperspective. Those cases where theoretically optimal algorithms areinappropriate are discussed and the practical alternatives areexplained...Effective Polynomial Computation. provides mu
13#
發(fā)表于 2025-3-23 21:29:06 | 只看該作者
14#
發(fā)表于 2025-3-24 01:56:53 | 只看該作者
https://doi.org/10.1007/978-3-663-13642-2on on which to build more complex structures like rational functions, algebraic functions, power series and rings of transcendental functions. And third, the algorithms for polynomial arithmetic are well understood, efficient and relatively easy to implement.
15#
發(fā)表于 2025-3-24 02:49:33 | 只看該作者
16#
發(fā)表于 2025-3-24 09:57:26 | 只看該作者
17#
發(fā)表于 2025-3-24 10:46:21 | 只看該作者
Diophantine Equations,arithmetic, quantum mechanics and the discretization introduced by synchronous computers, they arise in a number of practical situations. This chapter discusses several different classes of diophantine equations that frequently arise and techniques for their solution.
18#
發(fā)表于 2025-3-24 17:37:12 | 只看該作者
Zero Equivalence Testing,when done properly, only requires time polynomial in the size of the answer. This is often called . model of computation since the polynomials are treated as opaque boxes—how the values of the polynomial are computed is available to us.
19#
發(fā)表于 2025-3-24 23:00:44 | 只看該作者
20#
發(fā)表于 2025-3-24 23:23:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宿松县| 秦安县| 白城市| 甘南县| 银川市| 呼伦贝尔市| 东乌珠穆沁旗| 潼关县| 贞丰县| 津市市| 江源县| 台东市| 融水| 屏山县| 洪江市| 锡林浩特市| 九寨沟县| 南华县| 湖北省| 樟树市| 陆丰市| 靖江市| 和平区| 曲麻莱县| 博罗县| 牙克石市| 临漳县| 类乌齐县| 益阳市| 神池县| 象州县| 晋中市| 柘城县| 潼关县| 潞城市| 高淳县| 广安市| 乡城县| 葵青区| 新乐市| 云和县|