找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Polynomial Computation; Richard Zippel Book 1993 Springer Science+Business Media New York 1993 Approximation.Diophantine approxi

[復(fù)制鏈接]
樓主: Polk
21#
發(fā)表于 2025-3-25 04:46:46 | 只看該作者
,Euclid’s Algorithm,ations. These computations may be performed on a variety of different mathematical quantities: polynomials, rational integers, power series, differential operators, etc. The most familiar of these algebraic structures are the .: ?={1,2,3,...}. If we include zero and the negative integers we have ?, the ., which are commonly called the ..
22#
發(fā)表于 2025-3-25 08:07:25 | 只看該作者
23#
發(fā)表于 2025-3-25 12:45:17 | 只看該作者
,Polynomial GCD’s Classical Algorithms,ons with rational functions (quotients of polynomials) require a GCD to reduce the fraction to lowest terms. However, computing polynomial GCD’s is significantly more difficult than the arithmetic calculations discussed in Chapter 7.
24#
發(fā)表于 2025-3-25 16:06:48 | 只看該作者
25#
發(fā)表于 2025-3-25 20:58:57 | 只看該作者
26#
發(fā)表于 2025-3-26 03:22:21 | 只看該作者
27#
發(fā)表于 2025-3-26 05:09:38 | 只看該作者
28#
發(fā)表于 2025-3-26 10:18:19 | 只看該作者
The Springer International Series in Engineering and Computer Sciencehttp://image.papertrans.cn/e/image/302799.jpg
29#
發(fā)表于 2025-3-26 15:14:48 | 只看該作者
Effective Polynomial Computation978-1-4615-3188-3Series ISSN 0893-3405
30#
發(fā)表于 2025-3-26 17:31:52 | 只看該作者
https://doi.org/10.1007/978-3-642-99649-8ations. These computations may be performed on a variety of different mathematical quantities: polynomials, rational integers, power series, differential operators, etc. The most familiar of these algebraic structures are the .: ?={1,2,3,...}. If we include zero and the negative integers we have ?, the ., which are commonly called the ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 17:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜南县| 屯门区| 保靖县| 武邑县| 从化市| 永德县| 宜川县| 彰武县| 揭阳市| 门源| 山阴县| 金坛市| 綦江县| 镇雄县| 荃湾区| 龙胜| 珠海市| 绥棱县| 汤原县| 海原县| 巫山县| 汤原县| 威远县| 长垣县| 长海县| 达州市| 库尔勒市| 西青区| 云梦县| 深水埗区| 津市市| 镇巴县| 宽甸| 洞口县| 息烽县| 龙井市| 类乌齐县| 全椒县| 新丰县| 普宁市| 思茅市|