找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Polynomial Computation; Richard Zippel Book 1993 Springer Science+Business Media New York 1993 Approximation.Diophantine approxi

[復(fù)制鏈接]
樓主: Polk
41#
發(fā)表于 2025-3-28 17:59:23 | 只看該作者
42#
發(fā)表于 2025-3-28 21:22:37 | 只看該作者
43#
發(fā)表于 2025-3-29 02:10:08 | 只看該作者
,Polynomial GCD’s Interpolation Algorithms,We now use the interpolation algorithms of Chapters 13 and 14 to compute the GCD of two polynomials. This is the first of the modern algorithms that we discuss. Although the principles behind the sparse polynomial GCD algorithm are quite simple, the final algorithm is more complex than any discussed thus far.
44#
發(fā)表于 2025-3-29 06:03:20 | 只看該作者
45#
發(fā)表于 2025-3-29 10:26:30 | 只看該作者
https://doi.org/10.1007/978-1-4615-3188-3Approximation; Diophantine approximation; Interpolation; Mathematica; algebra; algorithms; computer; comput
46#
發(fā)表于 2025-3-29 14:21:30 | 只看該作者
47#
發(fā)表于 2025-3-29 16:50:55 | 只看該作者
https://doi.org/10.1007/978-3-642-99649-8ations. These computations may be performed on a variety of different mathematical quantities: polynomials, rational integers, power series, differential operators, etc. The most familiar of these algebraic structures are the .: ?={1,2,3,...}. If we include zero and the negative integers we have ?,
48#
發(fā)表于 2025-3-29 22:40:13 | 只看該作者
49#
發(fā)表于 2025-3-30 01:19:45 | 只看該作者
50#
發(fā)表于 2025-3-30 06:52:52 | 只看該作者
Zusammenfassende Darstellung der Arbeit,n be expressed as determining integers . and . that minimize .. Continued fraction techniques can be used to efficiently determine integers p and . satisfying . This is a rewritten form of Proposition 5.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 19:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柏乡县| 内江市| 红安县| 北安市| 舞钢市| 普兰店市| 台州市| 怀仁县| 海门市| 勃利县| 饶阳县| 连江县| 汝城县| 肇州县| 佛冈县| 韩城市| 连城县| 新竹县| 乌恰县| 怀来县| 江都市| 亳州市| 家居| 禄丰县| 邻水| 凤山县| 四会市| 龙海市| 西乡县| 丹寨县| 原阳县| 绍兴市| 三河市| 武安市| 万全县| 蓬安县| 临清市| 南涧| 德安县| 扎赉特旗| 环江|