找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Divergent Series, Summability and Resurgence III; Resurgent Methods an Eric Delabaere Book 2016 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
樓主: Carter
11#
發(fā)表于 2025-3-23 09:50:32 | 只看該作者
12#
發(fā)表于 2025-3-23 17:16:08 | 只看該作者
Some Elements about Ordinary Differential Equations,e fundamental existence theorem for Cauchy problems (Sect. 1.1). We detail the main differences between solutions of linear versus nonlinear ODEs, when the question of their analytic continuation is considered (Sect. 1.2). Finally we provide a short introduction to Painlevé equations (Sect. 1.3).
13#
發(fā)表于 2025-3-23 18:57:47 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:25:53 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/e/image/282070.jpg
16#
發(fā)表于 2025-3-24 09:02:46 | 只看該作者
17#
發(fā)表于 2025-3-24 14:15:03 | 只看該作者
Tipps und Tricks für den Sportmedizinere fundamental existence theorem for Cauchy problems (Sect. 1.1). We detail the main differences between solutions of linear versus nonlinear ODEs, when the question of their analytic continuation is considered (Sect. 1.2). Finally we provide a short introduction to Painlevé equations (Sect. 1.3).
18#
發(fā)表于 2025-3-24 18:17:37 | 只看該作者
19#
發(fā)表于 2025-3-24 22:41:53 | 只看該作者
20#
發(fā)表于 2025-3-25 00:07:13 | 只看該作者
https://doi.org/10.1007/978-3-642-55794-1é equation is recalled (Sect. 2.1). We precise how the Painlevé property translates for the first Painlevé equation (Sect. 2.2), a proof of which being postponed to an appendix. We explain how the first Painlevé equation also arises as a condition of isomonodromic deformations for a linear ODE (Sect
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 21:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淮安市| 临清市| 香河县| 尖扎县| 高雄市| 临夏县| 乌苏市| 全州县| 本溪市| 南开区| 吴堡县| 丘北县| 钟山县| 亳州市| 威信县| 南江县| 济阳县| 浮山县| 蒲江县| 常州市| 虹口区| 沙河市| 岳池县| 阿城市| 清新县| 长泰县| 朝阳市| 湘乡市| 澎湖县| 荣成市| 祁连县| 长春市| 临湘市| 玉溪市| 鄂尔多斯市| 高青县| 长宁县| 鄯善县| 新乡县| 甘孜县| 法库县|