找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Divergent Series, Summability and Resurgence III; Resurgent Methods an Eric Delabaere Book 2016 The Editor(s) (if applicable) and The Autho

[復制鏈接]
查看: 26267|回復: 43
樓主
發(fā)表于 2025-3-21 19:08:33 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Divergent Series, Summability and Resurgence III
副標題Resurgent Methods an
編輯Eric Delabaere
視頻videohttp://file.papertrans.cn/283/282070/282070.mp4
概述Features a thorough resurgent analysis of.the celebrated non-linear differential equation Painlevé I.Includes new specialized results in the.theory of resurgence.For the first time, higher order Stoke
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Divergent Series, Summability and Resurgence III; Resurgent Methods an Eric Delabaere Book 2016 The Editor(s) (if applicable) and The Autho
描述The aim of this volume is two-fold. First, to show howthe resurgent methods introduced in volume 1 can be applied efficiently in anon-linear setting; to this end further properties of the resurgence theorymust be developed. Second, to analyze the fundamental example of the FirstPainlevé equation. The resurgent analysis of singularities is pushed all theway up to the so-called “bridge equation”, which concentrates allinformation about the non-linear Stokes phenomenon?at infinity?of the First Painlevéequation. ..The third in a series of three, entitled .Divergent Series, Summability andResurgence., this volume is aimed at graduate students, mathematicians andtheoretical physicists who are interested in divergent power series and relatedproblems, such as the Stokes phenomenon. The prerequisites are a workingknowledge of complex analysis at the first-year graduate level and of thetheory of resurgence, as presented in volume 1.?
出版日期Book 2016
關(guān)鍵詞34Mxx,34M30,40Cxx,35Q15,34M50,30B40,30D05,37Fxx,37F99,34M55; Divergent Series; Summability; Resurgence;
版次1
doihttps://doi.org/10.1007/978-3-319-29000-3
isbn_softcover978-3-319-28999-1
isbn_ebook978-3-319-29000-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Divergent Series, Summability and Resurgence III影響因子(影響力)




書目名稱Divergent Series, Summability and Resurgence III影響因子(影響力)學科排名




書目名稱Divergent Series, Summability and Resurgence III網(wǎng)絡公開度




書目名稱Divergent Series, Summability and Resurgence III網(wǎng)絡公開度學科排名




書目名稱Divergent Series, Summability and Resurgence III被引頻次




書目名稱Divergent Series, Summability and Resurgence III被引頻次學科排名




書目名稱Divergent Series, Summability and Resurgence III年度引用




書目名稱Divergent Series, Summability and Resurgence III年度引用學科排名




書目名稱Divergent Series, Summability and Resurgence III讀者反饋




書目名稱Divergent Series, Summability and Resurgence III讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:04:41 | 只看該作者
,The First Painlevé Equation,é equation is recalled (Sect. 2.1). We precise how the Painlevé property translates for the first Painlevé equation (Sect. 2.2), a proof of which being postponed to an appendix. We explain how the first Painlevé equation also arises as a condition of isomonodromic deformations for a linear ODE (Sect
板凳
發(fā)表于 2025-3-22 01:32:35 | 只看該作者
,Tritruncated Solutions For The First Painlevé Equation,ect. 2.6. This example will introduce the reader to common reasonings in resurgence theory. We construct a prepared form associated with the first Painlevé equation (Sec 3.1). This prepared ODE has a unique formal solution from which we deduce the existence of truncated solutions by application of t
地板
發(fā)表于 2025-3-22 08:34:05 | 只看該作者
5#
發(fā)表于 2025-3-22 09:57:10 | 只看該作者
,Transseries And Formal Integral For The First Painlevé Equation,th the first Painlevé equation, which will be used later on to get the truncated solutions : this is done in Sect. 5.3, after some preliminaries in Sect. 5.1 and Sect. 5.2. Our second goal is to build the formal integral for the first Painlevé equation and, equivalently, the canonical normal form eq
6#
發(fā)表于 2025-3-22 14:01:18 | 只看該作者
,Truncated Solutions For The First Painlevé Equation,, we show that formal series components of the formal integral are 1-Gevrey and their minors have analytic properties quite similar to those for the minor of the formal series solution we started with (Sect. 6.1). We then make a focus on the transseries solution and we show their Borel-Laplace summa
7#
發(fā)表于 2025-3-22 21:01:54 | 只看該作者
8#
發(fā)表于 2025-3-22 23:21:47 | 只看該作者
,Resurgent Structure For The First Painlevé Equation,t structure is given in Sect. 8.1. Its proof is given using the so-called bridge equation (Sect. 8.4), after some preliminaries (Sect. 8.3). The nonlinear Stokes phenomena are briefly analyzed in Sect. 8.2.
9#
發(fā)表于 2025-3-23 03:48:37 | 只看該作者
10#
發(fā)表于 2025-3-23 08:47:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 21:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
西藏| 同德县| 晋宁县| 哈密市| 临西县| 乐都县| 双牌县| 桓台县| 隆昌县| 海兴县| 南安市| 双柏县| 琼结县| 富锦市| 东兰县| 介休市| 巫山县| 百色市| 新余市| 六安市| 革吉县| 梅州市| 井冈山市| 沁阳市| 乐安县| 蛟河市| 五峰| 杭锦后旗| 富锦市| 台北县| 图木舒克市| 黄冈市| 大石桥市| 铜鼓县| 磴口县| 芜湖县| 佛教| 当雄县| 淮滨县| 黎城县| 炉霍县|