找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Divergent Series, Summability and Resurgence III; Resurgent Methods an Eric Delabaere Book 2016 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
樓主: Carter
21#
發(fā)表于 2025-3-25 04:57:20 | 只看該作者
22#
發(fā)表于 2025-3-25 10:03:03 | 只看該作者
https://doi.org/10.1007/978-3-642-55794-1a function holomorphic on a cut plane. We further analyze the analytic properties of .. We show in Sect. 4.5 how . can be analytically continued to a domain of a Riemann surface, defined in Sect. 4.2, and we draw some consequences. This question is related to the problem of mastering the analytic co
23#
發(fā)表于 2025-3-25 13:00:11 | 只看該作者
Tipps und Tricks für den Urologenth the first Painlevé equation, which will be used later on to get the truncated solutions : this is done in Sect. 5.3, after some preliminaries in Sect. 5.1 and Sect. 5.2. Our second goal is to build the formal integral for the first Painlevé equation and, equivalently, the canonical normal form eq
24#
發(fā)表于 2025-3-25 16:42:36 | 只看該作者
25#
發(fā)表于 2025-3-25 20:44:39 | 只看該作者
https://doi.org/10.1007/978-3-642-55794-1esurgence viewpoint. We define sectorial germs of holomorphic functions (Sect. 7.2) and we introduce the sheaf of microfunctions (Sect. 7.3). This provides an approach to the notion of singularities which is the purpose of Sect. 7.4. We define the formal Laplace transform for microfunctions and for
26#
發(fā)表于 2025-3-26 00:21:14 | 只看該作者
27#
發(fā)表于 2025-3-26 06:49:07 | 只看該作者
28#
發(fā)表于 2025-3-26 10:35:40 | 只看該作者
0075-8434 .theory of resurgence.For the first time, higher order StokeThe aim of this volume is two-fold. First, to show howthe resurgent methods introduced in volume 1 can be applied efficiently in anon-linear setting; to this end further properties of the resurgence theorymust be developed. Second, to analy
29#
發(fā)表于 2025-3-26 15:23:13 | 只看該作者
30#
發(fā)表于 2025-3-26 20:13:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 21:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上蔡县| 嫩江县| 新营市| 松江区| 沿河| 遵化市| 天津市| 通河县| 晋城| 博湖县| 元谋县| 盐津县| 揭阳市| 丹东市| 秀山| 莱阳市| 波密县| 永康市| 南投县| 海盐县| 剑川县| 五寨县| 长沙市| 红河县| 澳门| 万盛区| 唐海县| 徐州市| 沭阳县| 黎川县| 仁怀市| 鹤庆县| 澄迈县| 双柏县| 衡阳市| 江都市| 平陆县| 阳城县| 湟中县| 苍南县| 邢台市|