找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Divergent Series, Summability and Resurgence III; Resurgent Methods an Eric Delabaere Book 2016 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
樓主: Carter
11#
發(fā)表于 2025-3-23 09:50:32 | 只看該作者
12#
發(fā)表于 2025-3-23 17:16:08 | 只看該作者
Some Elements about Ordinary Differential Equations,e fundamental existence theorem for Cauchy problems (Sect. 1.1). We detail the main differences between solutions of linear versus nonlinear ODEs, when the question of their analytic continuation is considered (Sect. 1.2). Finally we provide a short introduction to Painlevé equations (Sect. 1.3).
13#
發(fā)表于 2025-3-23 18:57:47 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:25:53 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/e/image/282070.jpg
16#
發(fā)表于 2025-3-24 09:02:46 | 只看該作者
17#
發(fā)表于 2025-3-24 14:15:03 | 只看該作者
Tipps und Tricks für den Sportmedizinere fundamental existence theorem for Cauchy problems (Sect. 1.1). We detail the main differences between solutions of linear versus nonlinear ODEs, when the question of their analytic continuation is considered (Sect. 1.2). Finally we provide a short introduction to Painlevé equations (Sect. 1.3).
18#
發(fā)表于 2025-3-24 18:17:37 | 只看該作者
19#
發(fā)表于 2025-3-24 22:41:53 | 只看該作者
20#
發(fā)表于 2025-3-25 00:07:13 | 只看該作者
https://doi.org/10.1007/978-3-642-55794-1é equation is recalled (Sect. 2.1). We precise how the Painlevé property translates for the first Painlevé equation (Sect. 2.2), a proof of which being postponed to an appendix. We explain how the first Painlevé equation also arises as a condition of isomonodromic deformations for a linear ODE (Sect
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 05:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍城县| 广丰县| 五寨县| 宁强县| 保山市| 福泉市| 北票市| 新沂市| 临夏县| 修文县| 宁南县| 延吉市| 隆子县| 遂平县| 新田县| 交口县| 兴仁县| 岫岩| 淳安县| 合阳县| 博白县| 永春县| 贵州省| 台湾省| 彰化县| 山东省| 略阳县| 黔江区| 呼玛县| 通山县| 普兰县| 台山市| 横山县| 米易县| 宜兴市| 兴隆县| 屯留县| 江津市| 威海市| 德江县| 大荔县|