找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Divergent Series, Summability and Resurgence III; Resurgent Methods an Eric Delabaere Book 2016 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
樓主: Carter
11#
發(fā)表于 2025-3-23 09:50:32 | 只看該作者
12#
發(fā)表于 2025-3-23 17:16:08 | 只看該作者
Some Elements about Ordinary Differential Equations,e fundamental existence theorem for Cauchy problems (Sect. 1.1). We detail the main differences between solutions of linear versus nonlinear ODEs, when the question of their analytic continuation is considered (Sect. 1.2). Finally we provide a short introduction to Painlevé equations (Sect. 1.3).
13#
發(fā)表于 2025-3-23 18:57:47 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:25:53 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/e/image/282070.jpg
16#
發(fā)表于 2025-3-24 09:02:46 | 只看該作者
17#
發(fā)表于 2025-3-24 14:15:03 | 只看該作者
Tipps und Tricks für den Sportmedizinere fundamental existence theorem for Cauchy problems (Sect. 1.1). We detail the main differences between solutions of linear versus nonlinear ODEs, when the question of their analytic continuation is considered (Sect. 1.2). Finally we provide a short introduction to Painlevé equations (Sect. 1.3).
18#
發(fā)表于 2025-3-24 18:17:37 | 只看該作者
19#
發(fā)表于 2025-3-24 22:41:53 | 只看該作者
20#
發(fā)表于 2025-3-25 00:07:13 | 只看該作者
https://doi.org/10.1007/978-3-642-55794-1é equation is recalled (Sect. 2.1). We precise how the Painlevé property translates for the first Painlevé equation (Sect. 2.2), a proof of which being postponed to an appendix. We explain how the first Painlevé equation also arises as a condition of isomonodromic deformations for a linear ODE (Sect
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 05:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
亳州市| 孟津县| 济宁市| 玉溪市| 赤峰市| 南皮县| 临湘市| 自贡市| 米泉市| 安丘市| 内黄县| 丽江市| 南华县| 克拉玛依市| 湛江市| 揭东县| 罗江县| 德惠市| 乳源| 大荔县| 贡嘎县| 鄂伦春自治旗| 嘉善县| 江孜县| 无为县| 韩城市| 云浮市| 兴隆县| 巴塘县| 句容市| 岳阳县| 普兰县| 启东市| 株洲市| 凤庆县| 炉霍县| 丰顺县| 娄底市| 博乐市| 浪卡子县| 个旧市|