找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Divergent Series, Summability and Resurgence III; Resurgent Methods an Eric Delabaere Book 2016 The Editor(s) (if applicable) and The Autho

[復制鏈接]
樓主: Carter
21#
發(fā)表于 2025-3-25 04:57:20 | 只看該作者
22#
發(fā)表于 2025-3-25 10:03:03 | 只看該作者
https://doi.org/10.1007/978-3-642-55794-1a function holomorphic on a cut plane. We further analyze the analytic properties of .. We show in Sect. 4.5 how . can be analytically continued to a domain of a Riemann surface, defined in Sect. 4.2, and we draw some consequences. This question is related to the problem of mastering the analytic co
23#
發(fā)表于 2025-3-25 13:00:11 | 只看該作者
Tipps und Tricks für den Urologenth the first Painlevé equation, which will be used later on to get the truncated solutions : this is done in Sect. 5.3, after some preliminaries in Sect. 5.1 and Sect. 5.2. Our second goal is to build the formal integral for the first Painlevé equation and, equivalently, the canonical normal form eq
24#
發(fā)表于 2025-3-25 16:42:36 | 只看該作者
25#
發(fā)表于 2025-3-25 20:44:39 | 只看該作者
https://doi.org/10.1007/978-3-642-55794-1esurgence viewpoint. We define sectorial germs of holomorphic functions (Sect. 7.2) and we introduce the sheaf of microfunctions (Sect. 7.3). This provides an approach to the notion of singularities which is the purpose of Sect. 7.4. We define the formal Laplace transform for microfunctions and for
26#
發(fā)表于 2025-3-26 00:21:14 | 只看該作者
27#
發(fā)表于 2025-3-26 06:49:07 | 只看該作者
28#
發(fā)表于 2025-3-26 10:35:40 | 只看該作者
0075-8434 .theory of resurgence.For the first time, higher order StokeThe aim of this volume is two-fold. First, to show howthe resurgent methods introduced in volume 1 can be applied efficiently in anon-linear setting; to this end further properties of the resurgence theorymust be developed. Second, to analy
29#
發(fā)表于 2025-3-26 15:23:13 | 只看該作者
30#
發(fā)表于 2025-3-26 20:13:01 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 05:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
庆阳市| 延津县| 青阳县| 平罗县| 岳阳市| 搜索| 内江市| 永顺县| 海口市| 屏边| 陵川县| 萨迦县| 四川省| 武陟县| 中宁县| 滦平县| 扶绥县| 广饶县| 沿河| 中江县| 富阳市| 札达县| 江北区| 丰顺县| 托克托县| 兴宁市| 嘉义县| 东方市| 扎囊县| 调兵山市| 若羌县| 白山市| 宁城县| 临桂县| 隆林| 迭部县| 南宫市| 伊春市| 云安县| 陕西省| 新安县|