找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano Conference proceedings 2003 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
樓主: 乳缽
51#
發(fā)表于 2025-3-30 12:12:28 | 只看該作者
52#
發(fā)表于 2025-3-30 12:31:13 | 只看該作者
53#
發(fā)表于 2025-3-30 20:26:20 | 只看該作者
54#
發(fā)表于 2025-3-31 00:45:36 | 只看該作者
https://doi.org/10.1007/978-1-4757-2548-3n of their bars from an initial configuration to a “straight line segment,” preserving the length of each bar and not crossing any two bars. In this paper, we introduce a new class of linkages, called “radial trees,” and show that there exists a radial tree which can not be flattened.
55#
發(fā)表于 2025-3-31 03:56:03 | 只看該作者
56#
發(fā)表于 2025-3-31 05:55:34 | 只看該作者
57#
發(fā)表于 2025-3-31 13:11:37 | 只看該作者
Non-Neoplastic Intestinal Disease. Our data structures are succinct using only .((1/.)log.(.)) bits of storage. We show that this is optimal by providing a matching lower bound showing that any data structure providing such an .-approximation requires at least Ω((1/.)log.(.)) bits of storage.
58#
發(fā)表于 2025-3-31 16:47:08 | 只看該作者
https://doi.org/10.1007/978-1-4757-2548-3nsional faces, we prove that the description of . . given in [9] is complete with 1 550 825 000 vertices and that the . conjecture [16] holds for .≤ 8. Computational issues for the orbitwise face and vertex enumeration algorithms are also discussed.
59#
發(fā)表于 2025-3-31 18:07:51 | 只看該作者
https://doi.org/10.1007/978-1-4757-2548-3dges .?∈?. such that . contains at least one node from each of {., ..., .???1}, {., ..., .???1} and {., ..., .???1, 0, ..., .???1 }. We show that for two hypergraphs . and .′ on ., the following two conditions are equivalent.
60#
發(fā)表于 2025-3-31 22:18:17 | 只看該作者
On the Face Lattice of the Metric Polytope,nsional faces, we prove that the description of . . given in [9] is complete with 1 550 825 000 vertices and that the . conjecture [16] holds for .≤ 8. Computational issues for the orbitwise face and vertex enumeration algorithms are also discussed.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安达市| 枣强县| 焦作市| 萍乡市| 大渡口区| 右玉县| 霸州市| 梅州市| 建水县| 阿鲁科尔沁旗| 湄潭县| 广平县| 大名县| 江北区| 泽州县| 东城区| 镇宁| 台南县| 泾源县| 仁怀市| 康定县| 惠来县| 诏安县| 阿拉善盟| 五家渠市| 龙南县| 枣强县| 滁州市| 广南县| 呼和浩特市| 福州市| 名山县| 太原市| 东至县| 奉新县| 南宁市| 南乐县| 诸暨市| 浮山县| 扎鲁特旗| 额尔古纳市|