找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano Conference proceedings 2003 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
樓主: 乳缽
41#
發(fā)表于 2025-3-28 15:09:42 | 只看該作者
42#
發(fā)表于 2025-3-28 19:09:31 | 只看該作者
43#
發(fā)表于 2025-3-29 01:18:35 | 只看該作者
Playing with Triangulations,cting, transforming, and marking triangulations. In various situations, we develop polynomial-time algorithms to determine who wins a given game under optimal play, and to find a winning strategy. Along the way, we show connections to existing combinatorial games such as Kayles.
44#
發(fā)表于 2025-3-29 03:11:50 | 只看該作者
Constrained Equitable 3-Cuttings,ector contains 1/3 of each mass). We prove the existence of a continuum of equitable 3-cuttings that satisfy some closure property. This permits us to generalize earlier results on both convex and non-convex equitable 3-cuttings with additional constraints.
45#
發(fā)表于 2025-3-29 08:01:07 | 只看該作者
On the Minimum Perimeter Triangle Enclosing a Convex Polygon,sence of a property called the .. This property was crucial in the linear-time solution for the minimum area triangle enclosing a convex polygon. We have discovered a non-trivial interspersing property for the minimum perimeter problem. This resulted in an optimal solution to the minimum perimeter triangle problem.
46#
發(fā)表于 2025-3-29 13:28:44 | 只看該作者
47#
發(fā)表于 2025-3-29 18:34:38 | 只看該作者
48#
發(fā)表于 2025-3-29 21:23:42 | 只看該作者
Discrete and Computational Geometry978-3-540-44400-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
49#
發(fā)表于 2025-3-30 00:16:41 | 只看該作者
0302-9743 Overview: Includes supplementary material: 978-3-540-20776-4978-3-540-44400-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
50#
發(fā)表于 2025-3-30 07:22:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大渡口区| 松原市| 新营市| 鄂州市| 涟源市| 临汾市| 辽源市| 乐平市| 玉门市| 页游| 长阳| 静宁县| 望谟县| 凯里市| 中牟县| 内黄县| 浦城县| 临汾市| 视频| 屯昌县| 邹城市| 闽清县| 长子县| 夹江县| 扬中市| 古交市| 怀集县| 金山区| 澄迈县| 琼中| 阿拉善盟| 金塔县| 历史| 普陀区| 荣昌县| 三原县| 漾濞| 海伦市| 江都市| 凤城市| 五大连池市|