找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano Conference proceedings 2003 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
樓主: 乳缽
31#
發(fā)表于 2025-3-26 21:56:32 | 只看該作者
Non-neoplastic Intestinal DiseaseFor a planar . point set . in general position, a convex polygon of . is called empty if no point of . lies in its interior. We show that . can be always partitioned into at most ?9./34 ? empty convex polygons and that ?(.?+?1)/4 ? empty convex polygons are occasionally necessary.
32#
發(fā)表于 2025-3-27 03:17:23 | 只看該作者
https://doi.org/10.1007/978-1-4757-2548-3We introduce relaxed scheduling as a paradigm for mesh maintenance and demonstrate its applicability to triangulating a skin surface in ?..
33#
發(fā)表于 2025-3-27 06:54:49 | 只看該作者
Non-neoplastic Intestinal DiseaseAn arrangement of . lines chosen at random from . . has a vertex set whose convex hull has constant (expected) size.
34#
發(fā)表于 2025-3-27 13:26:32 | 只看該作者
Universal Measuring Devices with Rectangular Base,We consider a device with rectangular base having no gradations. We show that the number of directly measurable amounts of liquid using the device with its vertices as markers is always 13, independent of its shape. Then we show how the device can measure any integral amount of liquid between 1 and 858 liters.
35#
發(fā)表于 2025-3-27 14:53:16 | 只看該作者
36#
發(fā)表于 2025-3-27 20:20:01 | 只看該作者
Partitioning a Planar Point Set into Empty Convex Polygons,For a planar . point set . in general position, a convex polygon of . is called empty if no point of . lies in its interior. We show that . can be always partitioned into at most ?9./34 ? empty convex polygons and that ?(.?+?1)/4 ? empty convex polygons are occasionally necessary.
37#
發(fā)表于 2025-3-28 00:29:16 | 只看該作者
Relaxed Scheduling in Dynamic Skin Triangulation,We introduce relaxed scheduling as a paradigm for mesh maintenance and demonstrate its applicability to triangulating a skin surface in ?..
38#
發(fā)表于 2025-3-28 05:27:44 | 只看該作者
39#
發(fā)表于 2025-3-28 07:11:02 | 只看該作者
https://doi.org/10.1007/b11261Maxima; Triangulation; algorithm; algorithmic geometry; algorithms; combinatorial mathematics; complexity;
40#
發(fā)表于 2025-3-28 14:17:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
塔河县| 元朗区| 墨玉县| 修文县| 陆丰市| 大姚县| 武邑县| 互助| 连城县| 威信县| 岗巴县| 班玛县| 喜德县| 赤壁市| 昔阳县| 景宁| 遵义市| 无锡市| 夏河县| 英山县| 云林县| 台山市| 隆化县| 江北区| 灌南县| 丽江市| 图木舒克市| 锡林郭勒盟| 海南省| 孙吴县| 织金县| 台南县| 汉沽区| 新乡县| 安陆市| 垫江县| 鹤峰县| 绍兴县| 连云港市| 枞阳县| 高清|