找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano Conference proceedings 2003 Springer-Verlag Berlin Heidelb

[復(fù)制鏈接]
樓主: 乳缽
31#
發(fā)表于 2025-3-26 21:56:32 | 只看該作者
Non-neoplastic Intestinal DiseaseFor a planar . point set . in general position, a convex polygon of . is called empty if no point of . lies in its interior. We show that . can be always partitioned into at most ?9./34 ? empty convex polygons and that ?(.?+?1)/4 ? empty convex polygons are occasionally necessary.
32#
發(fā)表于 2025-3-27 03:17:23 | 只看該作者
https://doi.org/10.1007/978-1-4757-2548-3We introduce relaxed scheduling as a paradigm for mesh maintenance and demonstrate its applicability to triangulating a skin surface in ?..
33#
發(fā)表于 2025-3-27 06:54:49 | 只看該作者
Non-neoplastic Intestinal DiseaseAn arrangement of . lines chosen at random from . . has a vertex set whose convex hull has constant (expected) size.
34#
發(fā)表于 2025-3-27 13:26:32 | 只看該作者
Universal Measuring Devices with Rectangular Base,We consider a device with rectangular base having no gradations. We show that the number of directly measurable amounts of liquid using the device with its vertices as markers is always 13, independent of its shape. Then we show how the device can measure any integral amount of liquid between 1 and 858 liters.
35#
發(fā)表于 2025-3-27 14:53:16 | 只看該作者
36#
發(fā)表于 2025-3-27 20:20:01 | 只看該作者
Partitioning a Planar Point Set into Empty Convex Polygons,For a planar . point set . in general position, a convex polygon of . is called empty if no point of . lies in its interior. We show that . can be always partitioned into at most ?9./34 ? empty convex polygons and that ?(.?+?1)/4 ? empty convex polygons are occasionally necessary.
37#
發(fā)表于 2025-3-28 00:29:16 | 只看該作者
Relaxed Scheduling in Dynamic Skin Triangulation,We introduce relaxed scheduling as a paradigm for mesh maintenance and demonstrate its applicability to triangulating a skin surface in ?..
38#
發(fā)表于 2025-3-28 05:27:44 | 只看該作者
39#
發(fā)表于 2025-3-28 07:11:02 | 只看該作者
https://doi.org/10.1007/b11261Maxima; Triangulation; algorithm; algorithmic geometry; algorithms; combinatorial mathematics; complexity;
40#
發(fā)表于 2025-3-28 14:17:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铜鼓县| 北宁市| 汉沽区| 西畴县| 隆安县| 团风县| 银川市| 和田市| 英山县| 商水县| 遂昌县| 百色市| 昌乐县| 积石山| 南开区| 安阳县| 安岳县| 宜兴市| 大庆市| 景谷| 扎赉特旗| 盐源县| 象州县| 湾仔区| 青浦区| 瓦房店市| 罗甸县| 读书| 贺兰县| 通山县| 于田县| 绥棱县| 宁津县| 阳原县| 沧州市| 英吉沙县| 承德县| 容城县| 南平市| 江西省| 沈阳市|