找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano Conference proceedings 2003 Springer-Verlag Berlin Heidelb

[復制鏈接]
樓主: 乳缽
11#
發(fā)表于 2025-3-23 13:34:23 | 只看該作者
12#
發(fā)表于 2025-3-23 17:51:12 | 只看該作者
,Piano-Hinged Dissections: Now Let’s Fold!, used to rotate a piece . from being next to a piece . on one level to being above or below piece . on another level. Techniques are presented and analyzed for designing piano-hinged dissections. These include the use of polygon structure, the conversion from twisted-hinged dissections, the folding
13#
發(fā)表于 2025-3-23 18:33:15 | 只看該作者
Comparing Hypergraphs by Areas of Hyperedges Drawn on a Convex Polygon,-gon . in the plane with vertices . ., . ., ..., . . which are arranged in this order clockwisely, we let each node .?∈?. correspond to the vertex . . and define the area . .(.) of . on . by the sum of weighted areas of convex hulls for all hyperedges in .. For 0 ≤ .<.<. ≤ .-1, a convex three-cut .(
14#
發(fā)表于 2025-3-24 01:33:53 | 只看該作者
15#
發(fā)表于 2025-3-24 05:45:08 | 只看該作者
16#
發(fā)表于 2025-3-24 06:58:28 | 只看該作者
17#
發(fā)表于 2025-3-24 13:37:03 | 只看該作者
18#
發(fā)表于 2025-3-24 16:55:29 | 只看該作者
Non-Neoplastic Intestinal Disease However, not much is known about the separation problem for these inequalities. Previously Avis and Grishukhin showed that certain special cases of the separation problem for hypermetric inequalities are NP-hard, as evidence that the separation problem is itself hard. In this paper we show that sim
19#
發(fā)表于 2025-3-24 22:18:22 | 只看該作者
20#
發(fā)表于 2025-3-25 00:07:48 | 只看該作者
Non-Neoplastic Intestinal Diseaseector contains 1/3 of each mass). We prove the existence of a continuum of equitable 3-cuttings that satisfy some closure property. This permits us to generalize earlier results on both convex and non-convex equitable 3-cuttings with additional constraints.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
平阳县| 鲜城| 鄂伦春自治旗| 抚宁县| 宣恩县| 沙田区| 东港市| 安吉县| 五峰| 临湘市| 伊川县| 民权县| 九寨沟县| 铁岭县| 高要市| 南丰县| 嘉义县| 汝南县| 宽城| 龙川县| 昌黎县| 泸州市| 明溪县| 个旧市| 信阳市| 石棉县| 商都县| 固镇县| 株洲县| 大港区| 永康市| 绵阳市| 怀仁县| 望江县| 罗江县| 北碚区| 夏河县| 玉树县| 同心县| 三穗县| 小金县|