找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Equations and Power Integral Bases; New Computational Me István Gaál Book 20021st edition Birkh?user Boston 2002 Algebraic Numb

[復(fù)制鏈接]
樓主: irritants
31#
發(fā)表于 2025-3-26 21:35:34 | 只看該作者
32#
發(fā)表于 2025-3-27 05:06:06 | 只看該作者
Spatial Linkages of the Chinese Economyex form equation can be reduced to a cubic and some corresponding quartic Thue equations (see Section 6.1). This means that in fact the index form equations in quartic fields are not much harder to solve than in the cubic case.
33#
發(fā)表于 2025-3-27 08:09:06 | 只看該作者
34#
發(fā)表于 2025-3-27 13:23:49 | 只看該作者
Jin Zhang,Jinkai Li,Xiaotian Wang having subfields. The case of number fields of degree seven seems to be complicated, since these fields can not have subfields. Special number fields of degree seven (e.g., cyclic fields) can be considered by the methods we used so far.
35#
發(fā)表于 2025-3-27 16:45:05 | 只看該作者
36#
發(fā)表于 2025-3-27 21:03:22 | 只看該作者
37#
發(fā)表于 2025-3-27 22:43:30 | 只看該作者
Auxiliary Results, Tools,he reduced bound is usually between 100 and 1000. These reduced bounds are quite modest, however if there are more than 4–5 of them, it is already impossible to test directly all possible exponents with absolute values under the reduced bound. Hence we have to apply certain enumeration methods (Section 2.3) to overcome this difficulty.
38#
發(fā)表于 2025-3-28 04:26:04 | 只看該作者
39#
發(fā)表于 2025-3-28 08:04:56 | 只看該作者
40#
發(fā)表于 2025-3-28 11:21:44 | 只看該作者
Auxiliary Results, Tools,alled . in two variables of type. + . = 1(cf. equation (2.5)) with given algebraic ., where . are unknown units in a number field. These units are written as a power product of the generators of the unit group and the unknown exponents are to be determined. Baker’s method (Section 2.1) is used to gi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
囊谦县| 陇西县| 昆山市| 民和| 湖北省| 保山市| 合阳县| 阳东县| 昆明市| 怀柔区| 苗栗市| 宁乡县| 崇文区| 永嘉县| 罗江县| 收藏| 吴江市| 宜春市| 吐鲁番市| 屯昌县| 沂南县| 元谋县| 鸡泽县| 奉贤区| 涡阳县| 临海市| 沂水县| 垦利县| 鹤山市| 桂林市| 梁河县| 华宁县| 韶关市| 平乐县| 淮安市| 沙雅县| 彭阳县| 宁明县| 高要市| 天台县| 宜兰市|