找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Equations and Power Integral Bases; New Computational Me István Gaál Book 20021st edition Birkh?user Boston 2002 Algebraic Numb

[復制鏈接]
樓主: irritants
41#
發(fā)表于 2025-3-28 17:41:31 | 只看該作者
42#
發(fā)表于 2025-3-28 19:13:20 | 只看該作者
Index Form Equations in General,rties, makes the resolution of index form equations much easier. A special situation (which otherwise is frequent in numerical examples) is considered in Section 4.4, when the field . is the composite of its subfields. The general results on composite fields have several applications, see e.g., Sect
43#
發(fā)表于 2025-3-29 02:40:29 | 只看該作者
44#
發(fā)表于 2025-3-29 04:45:31 | 只看該作者
45#
發(fā)表于 2025-3-29 07:58:47 | 只看該作者
Relative Power Integral Bases,situation. The algorithms for determining generators of relative power integral bases will be applied for finding generators of integral bases in higher degree fields having subfields. It is easy to see that if an element generates a power integral basis, then it also generates a relative power inte
46#
發(fā)表于 2025-3-29 11:43:15 | 只看該作者
Some Higher Degree Fields,g; for sextic fields a general algorithm does not seem to be feasible, we developed methods for determining power integral bases only in sextic fields having subfields. The case of number fields of degree seven seems to be complicated, since these fields can not have subfields. Special number fields
47#
發(fā)表于 2025-3-29 15:57:41 | 只看該作者
Tables, algorithms enables us to list the generators of power integral bases for all number fields with small discriminants. We give the data usually in increasing order of discriminants. These data complete other number field data contained in similar tables. Recall, that in the more complicated fields, w
48#
發(fā)表于 2025-3-29 22:03:33 | 只看該作者
10樓
49#
發(fā)表于 2025-3-30 03:48:16 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
和平县| 百色市| 谢通门县| 榆林市| 东乌| 聊城市| 马尔康县| 永宁县| 景德镇市| 望谟县| 宜黄县| 汶川县| 贵阳市| 安西县| 江永县| 平江县| 介休市| 万载县| 田林县| 仁寿县| 延川县| 抚顺县| 绥芬河市| 武强县| 庆元县| 大理市| 娱乐| 凤城市| 武功县| 雷波县| 阿克| 浙江省| 方正县| 北海市| 浪卡子县| 全南县| 白银市| 综艺| 阿尔山市| 盱眙县| 内江市|