找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Equations and Power Integral Bases; New Computational Me István Gaál Book 20021st edition Birkh?user Boston 2002 Algebraic Numb

[復制鏈接]
樓主: irritants
41#
發(fā)表于 2025-3-28 17:41:31 | 只看該作者
42#
發(fā)表于 2025-3-28 19:13:20 | 只看該作者
Index Form Equations in General,rties, makes the resolution of index form equations much easier. A special situation (which otherwise is frequent in numerical examples) is considered in Section 4.4, when the field . is the composite of its subfields. The general results on composite fields have several applications, see e.g., Sect
43#
發(fā)表于 2025-3-29 02:40:29 | 只看該作者
44#
發(fā)表于 2025-3-29 04:45:31 | 只看該作者
45#
發(fā)表于 2025-3-29 07:58:47 | 只看該作者
Relative Power Integral Bases,situation. The algorithms for determining generators of relative power integral bases will be applied for finding generators of integral bases in higher degree fields having subfields. It is easy to see that if an element generates a power integral basis, then it also generates a relative power inte
46#
發(fā)表于 2025-3-29 11:43:15 | 只看該作者
Some Higher Degree Fields,g; for sextic fields a general algorithm does not seem to be feasible, we developed methods for determining power integral bases only in sextic fields having subfields. The case of number fields of degree seven seems to be complicated, since these fields can not have subfields. Special number fields
47#
發(fā)表于 2025-3-29 15:57:41 | 只看該作者
Tables, algorithms enables us to list the generators of power integral bases for all number fields with small discriminants. We give the data usually in increasing order of discriminants. These data complete other number field data contained in similar tables. Recall, that in the more complicated fields, w
48#
發(fā)表于 2025-3-29 22:03:33 | 只看該作者
10樓
49#
發(fā)表于 2025-3-30 03:48:16 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
扎鲁特旗| 夹江县| 凤凰县| 仁寿县| 安泽县| 班玛县| 大石桥市| 武胜县| 芦溪县| 敦化市| 水城县| 平陆县| 平定县| 罗田县| 元氏县| 建水县| 南雄市| 阳城县| 六枝特区| 建宁县| 青神县| 泸定县| 科技| 泰顺县| 河源市| 雷州市| 安阳市| 浦城县| 德格县| 平顶山市| 湖南省| 嵊泗县| 崇礼县| 玛曲县| 平湖市| 甘孜| 微山县| 新沂市| 安乡县| 台安县| 泽普县|