找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Equations and Power Integral Bases; New Computational Me István Gaál Book 20021st edition Birkh?user Boston 2002 Algebraic Numb

[復制鏈接]
樓主: irritants
11#
發(fā)表于 2025-3-23 12:27:05 | 只看該作者
http://image.papertrans.cn/e/image/280541.jpg
12#
發(fā)表于 2025-3-23 15:17:49 | 只看該作者
Kenneth S. Alexander,Joseph C. Watkinsrties, makes the resolution of index form equations much easier. A special situation (which otherwise is frequent in numerical examples) is considered in Section 4.4, when the field . is the composite of its subfields. The general results on composite fields have several applications, see e.g., Sections 8.3, 10.2, 10.3.1 and 10.3.3.
13#
發(fā)表于 2025-3-23 18:56:15 | 只看該作者
14#
發(fā)表于 2025-3-24 00:27:24 | 只看該作者
15#
發(fā)表于 2025-3-24 06:21:18 | 只看該作者
16#
發(fā)表于 2025-3-24 08:53:19 | 只看該作者
17#
發(fā)表于 2025-3-24 11:11:29 | 只看該作者
18#
發(fā)表于 2025-3-24 17:28:04 | 只看該作者
Sextic Fields,An analogue of the general method used for quintic fields, reducing the index form equation directly to unit equations, does not seem to be feasible in sextic fields.
19#
發(fā)表于 2025-3-24 22:08:28 | 只看該作者
Introduction,s. As we shall see, this algorithmic problem is satisfactorily solved for lower degree number fields (especially for cubic and quartic fields) and there are efficient methods for certain classes of higher degree fields. Our algorithms enable us in many cases to describe all power integral bases also in . of certain number fields.
20#
發(fā)表于 2025-3-25 02:01:26 | 只看該作者
Quartic Fields,ex form equation can be reduced to a cubic and some corresponding quartic Thue equations (see Section 6.1). This means that in fact the index form equations in quartic fields are not much harder to solve than in the cubic case.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
富锦市| 辉县市| 威远县| 阿拉善盟| 兴国县| 子洲县| 安溪县| 惠安县| 达州市| 浦北县| 延吉市| 安塞县| 鄂托克旗| 哈尔滨市| 全州县| 上饶县| 自治县| 福建省| 南投市| 孝感市| 榆树市| 兴安县| 安宁市| 尉犁县| 石城县| 乡宁县| 邵阳县| 定兴县| 商都县| 石嘴山市| 黎城县| 嘉黎县| 麻江县| 大荔县| 工布江达县| 清镇市| 永清县| 兴山县| 布尔津县| 普兰县| 石柱|