找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Equations and Power Integral Bases; New Computational Me István Gaál Book 20021st edition Birkh?user Boston 2002 Algebraic Numb

[復制鏈接]
樓主: irritants
41#
發(fā)表于 2025-3-28 17:41:31 | 只看該作者
42#
發(fā)表于 2025-3-28 19:13:20 | 只看該作者
Index Form Equations in General,rties, makes the resolution of index form equations much easier. A special situation (which otherwise is frequent in numerical examples) is considered in Section 4.4, when the field . is the composite of its subfields. The general results on composite fields have several applications, see e.g., Sect
43#
發(fā)表于 2025-3-29 02:40:29 | 只看該作者
44#
發(fā)表于 2025-3-29 04:45:31 | 只看該作者
45#
發(fā)表于 2025-3-29 07:58:47 | 只看該作者
Relative Power Integral Bases,situation. The algorithms for determining generators of relative power integral bases will be applied for finding generators of integral bases in higher degree fields having subfields. It is easy to see that if an element generates a power integral basis, then it also generates a relative power inte
46#
發(fā)表于 2025-3-29 11:43:15 | 只看該作者
Some Higher Degree Fields,g; for sextic fields a general algorithm does not seem to be feasible, we developed methods for determining power integral bases only in sextic fields having subfields. The case of number fields of degree seven seems to be complicated, since these fields can not have subfields. Special number fields
47#
發(fā)表于 2025-3-29 15:57:41 | 只看該作者
Tables, algorithms enables us to list the generators of power integral bases for all number fields with small discriminants. We give the data usually in increasing order of discriminants. These data complete other number field data contained in similar tables. Recall, that in the more complicated fields, w
48#
發(fā)表于 2025-3-29 22:03:33 | 只看該作者
10樓
49#
發(fā)表于 2025-3-30 03:48:16 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
廊坊市| 息烽县| 阳朔县| 辰溪县| 溆浦县| 阳高县| 林西县| 定安县| 东阳市| 宣恩县| 阿克陶县| 桃江县| 阿克陶县| 应城市| 卫辉市| 高州市| 静安区| 济阳县| 光泽县| 昌图县| 葫芦岛市| 灵石县| 托里县| 开鲁县| 融水| 鹤峰县| 浮山县| 得荣县| 九江市| 化德县| 忻城县| 泰顺县| 易门县| 梧州市| 云林县| 连江县| 平昌县| 普兰店市| 新乡市| 元阳县| 宁河县|