找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Third International M. Jorge Cardoso,Tal Ar

[復(fù)制鏈接]
樓主: T-Lymphocyte
11#
發(fā)表于 2025-3-23 10:46:34 | 只看該作者
12#
發(fā)表于 2025-3-23 17:50:35 | 只看該作者
Computationally Efficient Cardiac Views Projection Using 3D Convolutional Neural Networksd to generate cardiac long axis and short axis views for diagnostic interpretation. These views may be generated by placing 6 landmarks: the left and right ventricle apex, and the aortic, mitral, pulmonary, and tricuspid valves. In this paper, we propose an automatic method to localize landmarks in
13#
發(fā)表于 2025-3-23 19:00:28 | 只看該作者
Non-rigid Craniofacial 2D-3D Registration Using CNN-Based RegressionN regression based non-rigid 2D-3D registration method. An iterative refinement scheme is introduced to update the reference volumetric image and the digitally-reconstructed-radiograph (DRR) for convergence to the target X-ray image. The CNN-based regressor represents the mapping between an image pa
14#
發(fā)表于 2025-3-23 22:46:28 | 只看該作者
A Deep Level Set Method for Image SegmentationN, the integrated method can incorporate smoothing and prior information to achieve an accurate segmentation. Furthermore, different than using the level set model as a post-processing tool, we integrate it into the training phase to fine-tune the FCN. This allows the use of unlabeled data during tr
15#
發(fā)表于 2025-3-24 04:45:14 | 只看該作者
Context-Based Normalization of Histological Stains Using Deep Convolutional Features well-normalized setting to achieve peak performance, especially when a limited amount of labeled data is available. This work provides a fully automated, end-to-end learning-based setup for normalizing histological stains, which considers the texture context of the tissue. We introduce ., which ext
16#
發(fā)表于 2025-3-24 09:37:13 | 只看該作者
17#
發(fā)表于 2025-3-24 13:55:54 | 只看該作者
Quantifying the Impact of Type 2 Diabetes on Brain Perfusion Using Deep Neural Networks brain. T2D is a very common metabolic disorder that can cause long term damage to the renal and cardiovascular systems. Previous research has discovered the shape, volume and white matter microstructures in the brain?to be significantly impacted by T2D. We propose a fully-connected deep neural netw
18#
發(fā)表于 2025-3-24 17:49:03 | 只看該作者
Left Atrium Segmentation in CT Volumes with?Fully Convolutional Networks segmented using ASM based method. The proposed FCN models were trained on the STACOM’13 CT dataset. The results show that FCN-based left atrium segmentation achieves Dice coefficient scores over 93% with computation time below 35s per volume, despite of the high variation of LA.
19#
發(fā)表于 2025-3-24 22:34:38 | 只看該作者
3D Randomized Connection Network with?Graph-Based Inferenceher introduce an efficient graph-based node selection and label inference method. Experiments have been carried out on the publicly available database and results demonstrate that the proposed method can obtain the best performance as compared with other state-of-the-art methods.
20#
發(fā)表于 2025-3-24 23:48:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合水县| 布拖县| 东乡族自治县| 南阳市| 合水县| 崇仁县| 汉寿县| 金沙县| 古交市| 枣强县| 娄底市| 临泽县| 曲靖市| 都昌县| 新营市| 闸北区| 云阳县| 行唐县| 广州市| 楚雄市| 乐平市| 龙州县| 密山市| 无为县| 确山县| 开远市| 苗栗县| 永丰县| 宁河县| 贵州省| 星座| 孙吴县| 阜康市| 山东| 壶关县| 克什克腾旗| 临桂县| 简阳市| 正安县| 惠来县| 玉林市|